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ABSTRACT 

A design is robust when it is not sensitive to variations in 
noise parameters such as manufacturing tolerances, 
material properties, environmental temperature, 
humidity, etc. In recent years several robust design 
concepts have been introduced in an effort to obtain 
optimum designs and minimize the variation in the 
product characteristics [1,2].  In this study, a probabilistic 
design analysis was performed in order to develop a 
robust design with the mean value of the resulting stress 
at target, and minimum standard deviation. The 
methodology for implementing robust design used in this 
research effort is summarized in a reusable workflow 
diagram. 

 

INTRODUCTION 

Currently, to account for manufacturing variations, auto 
body designs are based on the nominal or worst case 
scenario values, which leads to over-designed 
components.  If the scatter in material properties, 
thickness and dimensions is accounted for in the finite 
element analysis stress prediction, it is expected that 
lighter designs will be produced.  This type of stochastic 
approach can be used to investigate the robustness and 
sensitivity of a proposed solution and to minimize the 
risk of failing corporate and consumer tests.  In addition, 
it can potentially reduce the cost by allowing more 
variation in components that are not critical to 
performance requirements. 

In this research effort, probabilistic modeling of 
manufacturing variations for a structural auto body 
component (battery tray of an SUV) is performed to 
determine the sensitivity and the response distribution 
(stress, stiffness, fatigue life) due to the scatter of the 
random variables.  The scatter of the modulus of 
elasticity and the thickness and loading are defined in 

terms of probability distribution functions.   Monte Carlo 
and response surface sampling techniques are 
implemented in determining the response distribution. 
Six sigma design criteria are established to size the 
component and compare this design to the one 
developed using the traditional nominal value criteria.  

 

The Parametric Deterministic FEA Model 

For this study, the battery tray (FE model shown in figure 
1) was selected.  The tray is made from a composite 
material SMC and is supporting the battery (FE model 
shown in figure 2).   

 

Figure 1.   FE Model Of The Battery Tray 

The battery is modeled with an elastic isotropic material 
of uniform density appropriately adjusted to produce the 
battery weight.  The battery is supported by the tray with 
a set of springs at appropriate locations. The parametric 
model contains 2105 shell, 324 solid and 48 spring 
elements. 



 

 

Figure 2.   FE Model of the Battery and Tray Assembly 

It is assumed that the tray is rigidly fixed at the support 
locations.  The input parameters of the FEA model can 
be any dimension, material property and loading.  For 
this study three parameters were considered: the wall 
thickness (t), the modulus of elasticity (E) and the 
vertical loading (q).  We call these model parameters 
and for any set of values of the three model parameters 
a solution of the FEA model can produce two model 
output variables: the maximum Von Mises stress (max 

e) and the maximum equivalent strain (max e).   

The Probabilistic FEA Model 

Uncertainty in the input parameters of the FEA model 
can be introduced by assuming certain randomness in 
the input parameters.  In this study, it was assumed that 
the thickness (t), and the modulus of elasticity (E) are 
characterized by a Gaussian distribution and that the 
vertical loading (q) is characterized by a lognormal 
distribution. These assumptions are based on historical 
data. The distribution parameters (mean values and 
standard deviations) can be specified to define a set of 
random values for the model parameters.  The mean 
value of the thickness was considered as a controllable 
parameter and it was declared as an optimization 
design variable.  The rest of the distribution parameters 
(mean values of E & q) and the standard deviation of t, E 
and q were considered uncontrollable or noise 
parameters.   Figures 3, 4 and 5 show the probability 
distributions and the probability of the input variables, 
namely, thickness, modulus of elasticity and vertical 
loading.  The ANSYS3 probabilistic Design System was 
used to generate the values from the distribution 
parameters.  A set of 100 points from these distributions 
was used to perform FEA analysis on the tray.  It was 
assumed that the thickness exhibits a Gaussian 
distribution with a mean value of 3.0 mm and a standard 
deviation of 0.3 mm.  In the optimization model, the 
mean value of the thickness was an unknown design 

variable.  It was also assumed that the modulus of 
elasticity exhibits a Gaussian distribution with a mean 
value of 5723 N/mm2 and a standard deviation 570 
N/mm2.     
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Figure 3.   Probability Distribution of Thickness t (input 
      variable) 

3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-4

Modulus of Elastic ity  (N/mm2 )

P
ro

b
ab

ili
ty

 D
en

si
ty

P ropability Density of  Modulus of Elasticity

2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Modulus of Elastic ity (N/mm2)

P
ro

ba
bi

lit
y 

P ropability of Input Variable E

 

Figure 4.   Probability Distribution of Modulus of   
     Elasticity E (input variable) 
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Figure 5.   Probability Distribution of Vertical   
     Loading q (input variable) 



The lognormal distribution with a mean of 58842 m/sec2 
and standard deviation of 12000  m/sec2 was considered 
for the vertical loading.   

The following four sampling techniques were used to 
combine the input variables and produce a set of output 
variables max e and max e: 

1. Direct Monte Carlo Sampling 

2. Latin Hypercube Sampling  

3. Central Composite Design with response 
surface 

4. Box-Behnken Matrix Design with response 
surface 

Using one of the four sampling techniques, the 
probabilistic model determines a set of designs (unique 
values of the model input parameters), uses the 
parametric FEA model and computes a set of output 
variables.  By post-processing the output variables, the 
probabilistic model computes the distribution parameters 
of the output variables. 

Direct Monte Carlo Sampling  

Figure 6 shows a scatter plot of the input variables t and 
E using the direct Monte Carlo sampling technique.  
Figure 7 and 8 show the effect (and scatter) of the 
thickness variation on the max equivalent strain and 
stress respectively.  Figures 9 and 10 show the 
histogram of the max equivalent strain and stress 
respectively. The mean (average) value of the max Von 
Mises stress is 40.80 N/mm2 and the standard deviation 
is 19.57 N/mm2.  The mean (average) value of the max 
strain is 1.0545846e-002 and the standard deviation is 
6.1042144e-003. 
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Figure 6.  Scatter Plot of the Input Variables t and E  
    using Direct Monte Carlo Sampling 
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Figure 7.  Scatter Plot of the Input Variables t and  
    max strain using Direct Monte Carlo Sampling 
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Figure 8.   Scatter Plot of the Input Variables t and max 
     stress using Direct Monte Carlo Sampling 
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Figure 9.  Histogram of max strain using Direct   
    Monte Carlo Sampling 
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Figure 10.  Histogram of max stress using Direct  
       Monte Carlo Sampling 

 

Latin Hypercube Sampling 

Figure 11 shows a scatter plot of the input variables t 
and E using the Latin Hyper Cube Sampling technique.  
Figures 12 and 13 show the effect (and scatter) of the 
thickness variation on the max equivalent strain and 
stress respectively.  Figures 14 and 15 show the 
histogram of the max equivalent strain and stress 
respectively. The mean (average) value of the max Von 
Mises stress is 40.18 N/mm2 and the standard deviation 
is 19.40 N/mm2.  The mean (average) value of the max 
strain is 1.0358670e-002 and the standard deviation is 
5.9027582e-003. 
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Figure 11.  Scatter Plot of the Input Variables t and E 
      using Latin Hypercube Sampling 
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Figure 12.  Scatter Plot of the Input Variables t and               
      max strain using Latin Hypercube Sampling 
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Figure 13.  Scatter Plot of the Input Variables t and  
      max stress using Latin Hypercube Sampling 
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Figure 14.  Histogram of max strain using     
       Latin Hypercube Sampling 
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Figure 15.    Histogram of max stress using  
         Latin Hyper Cube Sampling 

Central Composite Design 

Figures 16 and 17 show the histogram of the max 
equivalent strain and stress respectively. The mean 
(average) value of the max Von Mises stress is 39.98 
N/mm2 and the standard deviation is 22.08 N/mm2.  The 
mean (average) value of the max strain is   
1.3305926e-002 and the standard deviation is 
4.8547397e-003. 
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Figure 16.  Histogram of max strain using the 
       Central Composite Design 

 Box-Behnken Matrix Design 

Figures 18 and 19 show the histograms of the max 
equivalent strain and stress respectively. The mean 
(average) value of the max Von Mises stress is 40.95 
N/mm2 and the standard deviation is 24.60 N/mm2.  The 
mean (average) value of the max strain is          
1.6345224e-002 and the standard deviation is 
5.8322964e-003. 
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Figure 17.   Histogram of max stress using  
  the Central Composite Design 
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Figure 18.  Histogram of max strain using the 
       Box-Behneken Matrix Design. 

Designing for Six Sigma quality with 
Probabilistic Design and Optimization 

Factors like geometric dimensions (mean value of 
thickness) of a part can be controlled by designers in a 
typical automotive design. Uncontrollable or noise 
factors such as manufacturing imperfections  (standard 
deviation of the thickness), environmental variables 
(loading), product deterioration (material properties) are 
sources of variations whose effects cannot be 
eliminated.  The goal of a robust design is to reduce a 
product's variation by reducing the sensitivity of the 
product to the sources of variation rather than by 
controlling these sources.  An effort was made to reduce 
response variation by selecting appropriate settings for 
controllable parameters  to dampen the effects of hard-
to-control noise variables.  The methodology for 
implementing robust design used in this research effort 
is summarized in a workflow diagram shown in Figure 
20. 



0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

max Von Mises Stress (N/mm2)

R
el

at
iv

e 
F

re
qu

en
cy

Histogram of max Stress with  Box-Behnken Matrix Design

 

Figure 19.  Histogram of max stress using the  
       Box-Behneken Matrix Design 

The objective is to select automatically the mean value 
of the geometric design variables that minimize variation 
and produce a design that meets a target value.  To 
automate this, we can set up an optimization loop that 
uses as design variables the mean values of thickness.  
For a given set of mean values (using the probabilistic 
model) this approach can produce the mean and 
standard deviation of the response.  In this case the 
mean max Von Mises stress  and its standard deviation.  
The next step is to compute the value of the  

con = mean (max e) + 3 * std dev of (max e), 

compare it to a target value and select the mean values 
of the design variables that minimize the standard 
deviation subject to con < Target 

The problem can be expressed in mathematical terms 
as: 

 

Select the mean values of the model design variables 
within a given range: 

 

t min < mean ti < t max 

that minimize the standard deviation of the response 

minimize [std. dev of (max e)] 

subject to the constraint: 

[mean (max e) + 3 * std dev of (max e)] < Target 

 

The ANSYS script files to implement this process are 
available upon request. 

 

CONCLUSIONS 

• The example presented demonstrates the 
advantage of using an automated probabilistic 
design process. 

• The sampling technique has a negligible effect 
on the mean values of the response and a small 
effect on the standard deviation of the response. 

• For this component and number of design 
variables, the Box-Behneken Matrix design 
technique is recommended since it produces the 
same quality of results as the other techniques, 
but with the minimum number of FEA runs. 

• The above conclusion may not be valid if a large 
number of design variables forms a highly non-
linear problem.  In that case, the Latin  
Hypercube and Box-Behneken Matrix should be 
used to validate the "goodness" of the    Box-
Behneken Matrix technique. 

• With the probabilistic design and optimization 
approach, engineers are enabled to identify 
better designs that meet the performance 
objectives and are less sensitive to 
manufacturing variations.  

• FEA software tools have incorporated 
probabilistic design and allow distributed 
computing that enables the implementation of 
this technology.  

• By incorporating the physical scatter into the 
model, the risk of failing legal or consumer tests 
can be minimized 
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Figure 20  Reusable workflow template that determines the mean values of design variables that produce robust design 
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