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ABSTRACT 

Although great advances have been made over the last 
two decades in the automotive structural design process, 
tradition and experience guide many design choices 
even today.  The need for innovative tools is stronger 
now more than ever before as the design engineer is 
confronted with more complex, often contradictory 
design requirements such as cost, weight, performance, 
safety, time to market, life cycle, aesthetics, 
environmental impact, changes in the industry's business 
models, etc. 
 
The ever-increasing use of optimization tools in 
engineering design generates solutions that are very 
close to the limits of the design constraints, hardly 
allowing for tolerances to compensate for uncontrollable 
factors such as manufacturing imperfections.  Optimum 
designs developed without consideration of uncertainty 
can lead to non-robust designs.  Reliability-Based Design 
Optimization (RBDO) methodologies not only provide 
improved designs but also a confidence range for 
simulation-based optimum designs.  
 
In this research effort, a six-sigma robust design 
formulation is presented along with an example that 
demonstrates the advantage of robust versus 
deterministic optimization. 

 

INTRODUCTION 

The need for innovative tools is apparent now more than 
ever as more complex design requirements are surfacing 
such as cost, performance, safety, quality, time to 
market, short life cycle, environmental impacts, wow 
aesthetics (creating a passion for the product: "I've got to 
have it") and major changes in industries' business 
models.  Moreover, the automotive industry’s cycle 
development time from concept to production is being 

compressed significantly. Some of the changes in the 
automotive industry’s business model include: vehicle 
designs are tailored to focused markets; vehicles are 
being manufactured more on a global scale; and vehicles 
are designed increasingly through multiple engineering 
sites around the world.  
 
Quality issues are addressed early in the design cycle 
with robust design is a methodologies. The goal of robust 
design is to deliver customer expectations at affordable 
cost regardless of customer usage, degradation over 
product life and variation in manufacturing, suppliers, 
distribution, delivery and installation.  Since randomness 
and scatter is a part of reality everywhere, probabilistic 
design techniques are necessary to engineer quality into 
designs.  Traditional deterministic approaches account 
for uncertainties through the use of empirical safety 
factors.  The safety factors are derived based on past 
experience; they do not guarantee satisfactory 
performance and do not provide sufficient information to 
achieve optimal use of available resources.  The 
probabilistic design process has not been widely used 
because it has been intimidating and tedious due to its 
complexity.  In recent years, FEA codes have introduced 
integrated probabilistic systems (e.g. ANSYS PDS) that 
make probabilistic analysis setup simple if the control 
and the noise parameters are identifiable [Ref. 1].  
Control parameters are those factors that the designer 
can control, such as geometric design variables, material 
selection, design configurations and manufacturing 
process settings [Ref. 2].  Noise parameters on the other 
hand are factors that are beyond the control of the 
designer, such as material property variability, 
manufacturing process limitations, environment 
temperature, humidity, component degradation with time 
etc.   
 
This paper describes a technique to perform probabilistic 
analysis, reliability based optimization and robust 
optimization.  
  



 
FORMULATIONS FOR DETERMINISTIC, RELIABILITY 
AND ROBUST OPTIMIZATION 

Deterministic Optimization 

The ever-increasing use of optimization tools in engineering 
designs generates designs that are on the design constraint 
limits leaving very little or no room for tolerances in modeling 
uncertainties and manufacturing imperfections [Ref. 3].  
Optimum designs developed without consideration of 
uncertainty could possibly lead to unreliable designs.  In 
addition to the active constraint problems, optimum designs 
may be sensitive to design parameters such that small 
changes in the design variables may lead to a significant 
loss of performance.  A possible formulation of deterministic 
optimization from automotive crashworthiness (with fictitious 
numbers) can be: 
 
 
          Minimize  Weight, 
 
  subject to:  B-Pillar Velocity  ≤  10 mm/s 

 Abdomen Load  ≤  1.0 KN 
 Rib Displacement  ≤ 30 mm 
 Symphysis Load ≤ 5.0 KN 

  
  Thickness Design Variables: 
 

  ti

min  ≤ ti ≤ ti

max 
 

  
Reliability Index Approach 

For reliability based design, a performance function can 
be defined as G = R – S where R and S are statistically 
independent and normally distributed random variables of 
the resistance and load measurements of the structure.  
Typically, R can be the yield stress and S the maximum Von 
Mises stress.  The G function is also called limit state 
function or failure function.  The curve G = 0 divides the 
design space into two regions, the safe region when G > 0 
and unsafe region when     G < 0.  Because we consider R 
and S to have variation, G will also exhibit variation.  The 
ratio β of the mean value of the G function (µG) and the 
standard deviation of the G function (σG) is defined as safety 
index or reliability index.  If Φ is the cumulative distribution 
function and G has a normal distribution, then: 
 
 
     β =   -Φ (1 - Reliability)  =   µG / σG     
 
 
A possible formulation can be: 
 
    Maximize  β, 

subject to:  Weight < Target-Weight 
 
   DVi

min< DVi < DVi

max 

 

 
Another formulation using the reliability index can be: 

 
 
         Minimize  Weight, 
 
subject to:  β >  Target β 

  
  DVi

min< DVi < DVi

max 
 

 
A typical target value β is 3, which corresponds to a 
probability of failure of 0.00135.  However, it has been 
observed that the Reliability Index Approach exhibits 
very slow convergence or even divergence for some 
problems. 
 
Reliability Optimization Approach  

Significant research effort has been devoted to making 
reliability based structural design optimization practical 
[Ref. 4, 5, 6].   Reliability based optimization requires two 
major steps.  First, we need to identify the random 
variables and qualify the causes of variation.  Typically 
the distribution type and the necessary values that 
describe the distribution function of the random variables 
(i.e. mean and standard deviation for a normal 
distribution) need to be found. Second, we need to select 
the desired reliability level (say, 90%) and reformulate 
the deterministic constraints as probabilistic constraints.  
For example a 90% reliability goal may be expressed as: 
the probability of failure Pf of the Abdomen Force to be 
greater than 1 KN must be less than 10%.  A possible 
formulation of reliability-based optimization with a 
reliability goal of 95% from automotive crashworthiness 
(with fictitious numbers) can be: 
 
 
          Minimize  Weight, 
 
   subject to: 
 
   P failure [ B-Pillar Velocity   >   10 mm/s ] ≤ 5%  
   P failure [ Abdomen Load   >    1.0 KN   ] ≤  5% 
   P failure [ Rib Displacement   >    30 mm   ] ≤ 5% 
   P failure [ Symphysis Load>    5.0 KN   ] ≤ 5% 
 
  Design Variables: 
  

Mean values of various design parameters, 
 
 µti

min  ≤ µti ≤ µti

max 

 

   Random Variables with known or assumed variation: 
 
 Thickness 
 Yield Stress 
 Barrier Height 
 Impact Position 
 



  
The reliability based optimization approach accounts for 
variation and generates designs that meet a given level 
of reliability and usually move optimum solutions away 
from the constraints.  
 
Robust Optimization Approach 

The robust design optimization approach not only shifts 
the performance mean to the target value but also 
reduces the product’s performance variability, achieving 
Six-sigma level robustness on the key product 
performance characteristics with respect to the quantified 
variation [Ref. 7, 8].  A possible formulation of a 6-sigma 
level robust design optimization approach from 
automotive crashworthiness (with fictitious numbers) can 
be: 
 
 
          Minimize  Weight, 
 
   subject to: 
  
    µ [ B-Pillar Velocity   ] + 6 σ[ B-Pillar Velocity  ]  ≤  10 mm/s 
    µ [ Abdomen Load  ] + 6 σ [ Abdomen Load ]  ≤  1.0 KN   
    µ [ Rib Displacement    ] + 6 σ [ Rib Displacement   ]  ≤  30 mm    
    µ [ Symphysis Load] + 6 σ [Symphysis Load]  ≤  5.0 KN   

 
   Design Variables: Mean values or standard deviation 
   of design parameters, 

 

 µti

min  ≤ µti ≤ µti

max 

 σti

min  ≤ σti ≤ σti

max 

 

   Random Variables with known or assumed variation: 
 
 Thickness 
 Yield Stress 
 Barrier Height 
 Impact Position 
 
 
The Parametric Deterministic FEA Model 

In this research effort, the probabilistic modeling of 
manufacturing (thickness) and loading variations for the 
radiator support of a SUV was considered.  A parametric 
finite element model of the radiator support was 
developed considering the thickness t and the load P as 
parameters.  It was assumed that the material is 
isotropic, linear elastic and the behavior is within small 
deflection linear theory limits.  The Modulus of Elasticity, 
E is assumed to be 200000 MPa and Poisson's ratio, ν = 
0.25.  Several load cases were evaluated and the 
torsional load case was found to control the maximum 
Von Mises stress. The distribution of the magnitude of 
the displacement vector for this load case is shown in 
Figure 1.  The corresponding  Von Mises stress 
distribution is shown in Figure 2.  

 
For any combination of the input parameters (t and P) 
the solution to the parametric model can compute the 
maximum Von Mises stress σσσσeq.  We define a 
performance function G as the difference between yield 
stress and the maximum computed Von Mises stress or 
 
                       
  G = σσσσy - σσσσeq         

                                                                                     
 
If G remains positive at all time, we have a safe design.  
 
The performance function G is considered the output 
variable and is a function of the input variables t and P.  

The data flow for the parametric FE model is shown in 
the blue box in Figure 3.  For a given geometry and a set 
of values of the input parameters, the deterministic 
parametric FE model can predict the value of the 
performance function G. 

 

Figure 1 Displacement Distribution Torsional Load Case 

 

 
Figure 2 Von Mises Distribution for Torsional Load Case 



The Probabilistic FEA Model 
Uncertainty in the input parameters of the FEA model 
can be introduced by assuming certain randomness in 
the input parameters.  In this study, it was assumed that 
a Gaussian distribution with mean value µµµµt and standard 
variation σσσσt characterizes the variation in thickness t.  The 
mean value µµµµt was considered as a controllable 
parameter and it was declared an optimization design 
variable.  The standard variation σσσσt was considered as 
3% of the mean value µµµµt.  The applied load P was 
considered as uncontrollable or a noise parameter that 
exhibits a lognormal distribution with a mean value        
µµµµP = 44 N and standard variation σσσσP = 8.8 N.  Figure 4 
shows the Probability Distribution of the input variable P. 

 

 
 

Figure 3     Data Flow for Probabilistic & Parametric            
      FEM Models 
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Figure 4   Probability Distribution of the input variable P 
 
 
The top part of Figure 5 shows the Probability 
Distribution of the input variable t with mean value          
µµµµt = 1.10 mm and standard variation σσσσt = 0.033 mm.  The 
lower part of Figure 5 shows the Probability Distribution 
of the input variable t with mean value µµµµt = 0.88 mm and 
standard variation σσσσt = 0.0264 mm.   
 
Monte Carlo and the Central Composite Design 
response surface sampling techniques were 
implemented in determining the response distribution of 

the output variable G for various values of the mean 
thickness value µµµµt .  Figure 3 shows the data flow of the 
probabilistic model.  A sampling method is selected that 
combines both noise and control random variables to 
produce a set of deterministic runs, using the parametric 
FE model.  Post processing of these runs determines the 
probability distribution of the performance function G. 
 
Figure 6 shows the Probability Distribution for three 
different values of mean thickness µµµµt = 0.85, 1.0 and 2.0.  
One may observe that for µµµµt = 2.0, the entire distribution 
of the performance function G remains on the positive 
side indicating that for µµµµt = 2.0 the maximum Von Mises 
stress does not exceed the yield shear stress.  In this 
case the mean value of the performance function          
µµµµG = 163.47 MPa, the standard deviation σσσσG = 7.56 MPa. 
and the probability that the performance function G is 
less than zero is 0 %, P[G<0] = 0%.   
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Figure 5   Probability Distribution of the input variable t  
with µt = 1.10 mm and σt = 0.033 mm (top) and  
µt = 0.88 mm and σt = 0.0264 mm (bottom) 

 
 
For µµµµt = 1.0, one may observe that part of the distribution 
of the performance function G remains on the positive 
side indicating that for µµµµt = 1.0 the maximum Von Mises 
stress some times exceeds the yield shear stress.  The 



area to the left of the zero (red line) indicates the 
probability of failure.  In this case, the mean value of the 
performance function  µµµµG = 64.676 MPa, the standard 
deviation σσσσG = 27.90 MPa. and the probability that the 
performance function G is less than zero is 2.3 %, 
P[G<0] = 2.3%.   
 
Similarly for µµµµt = 0.88, a smaller part of the distribution of 
the performance function G remains on the positive side 
indicating that for µµµµt = 0.88 the maximum Von Mises 
stress sometimes exceeds the yield shear stress.  In this 
case the mean value of the performance function,         
µµµµG = 27.747 MPa, the standard deviation σσσσG = 35.77 
MPa. and the probability that the performance function G 
is less than zero is 20.2 %, P[G<0] = 20.2%.   
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Figure 6     Distributions of Performance Function G for  
     various values of µt 

 
 
 

Results of Reliability Based Analysis  

For various values of the standard deviation µµµµt, the 
probabilistic FEA model can not only predict the mean 
value of the performance function µµµµG, and the standard 
deviation of the performance function σσσσG, but also the 
probability that the performance function is less than 
zero P[G < 0].  Table 1 shows the mean, the standard 
deviation of performance function G and probabilities of 
failure for various values of the mean thickness value µµµµt.  
Figure 7 shows a plot of the probability that the 
performance function is less than zero versus the mean 
thickness value µµµµt.  One may observe that for values of µµµµt 
= 0.9633, 0.9281 and 0.8995 mm, the probability of 
failure is 5%, 10% and 15% respectively.  This graph can 
be used as a design guide to select the required mean 
thickness value µµµµt to achieve the desired reliability level.  
For example, if the desired reliability level is 95% the 
minimum mean thickness value µµµµt should be 0.9633 mm. 
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Figure 7  Probability that the Performance Function is 
   less than zero vs. the Mean Thickness Value µt 

 
Results Of  Robust Analysis 
 

The robust design optimization approach not only shifts 
the performance mean to the target value but also 
reduces a product’s performance variability, achieving 
the desired sigma level robustness on the key product 
performance characteristics with respect to the quantified 
variation. 

In this study a typical formulation of an n-sigma level 
robust design approach can be stated as: 

Find the value of the minimum mean thickness value µµµµt in 
order to achieve positive values of the expression  

µµµµG - n σσσσG > 0 



Figure 8 shows a sensitivity plot of six curves for 1-σ 
through 6-σ versus the mean thickness value µµµµt.  For a 3-
σ quality level, the mean thickness value µµµµt should be 
greater than µµµµt = 1.0536 mm.  For a 6-σ quality level, the 
mean thickness value µµµµt should be greater than             
µµµµt = 1.2558 mm.  
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Figure 8   1-σ through 6-σ quality level curves vs. the 
    standard deviation of mean thickness value µt 

CONCLUSIONS 

 
The example presented demonstrates the advantage of 
using an automated probabilistic design process that 
enables engineers to identify better designs that meet 
the performance objectives and are less sensitive to 
manufacturing variations. 

For a given sigma quality level (i.e. six-sigma) the mean 
thickness value µµµµt can be determined using the design 
process described.  The results summary is also shown 
in Table 2. 

For a given reliability goal (i.e. 95%) the mean thickness 
value µµµµt can be determined using the design process 
described.  The results summary is shown in Table 2. 

By incorporating the physical scatter into the model, the 
risk of failing legal or consumer tests can be minimized.

 

 
Table 1:  Mean, Standard Deviation of Performance Function G and Probabilities of Failure for various values of the  

  Mean thickness value µµµµt 

 

µt  
(mm) 

µG 

(Mpa) 

σG  

(Mpa) 

P[ G<0] (%) 
Min G 
(Mpa) 

Max G 
(Mpa) 

Mean t
Value Mean G Value Standard

Deviation of G 
Probability
that G < 0  

Minimum
G Value 

Maximum
G Value 

0.85 16.118 38.092 30.78 -241.1 125.3 

0.88 27.747 35.774 20.23 -195.0 126.5

0.90 34.891 34.301 14.83 -146.5 132.9

0.95 50.919 30.855 6.25 -115.5 132.6

0.98 59.384 29.200 3.427 -83.97 140.0

1.00 64.676 27.901 2.31 -118.5 139.0

1.10 86.906 23.477 0.180 -50.56 149.6

1.20 104.03 19.862 0.037 -152.1 156.4

1.40 128.25 14.860 0.00 50.54 168.7

1.60 144.25 11.525 0.00 77.88 176.1

1.80 155.40 9.209 0.00 100.00 181.24

2.00 163.47 7.5757 0.00 117.2 182.8



 

Quality / Reliability 

Mean 
Thickness, µµµµt 

(mm) 

1-σ Quality Level 0.8987 

2-σ Quality Level 0.9775 

3-σ Quality Level 1.0536 

4-σ Quality Level 1.1222 

5-σ Quality Level 1.1866 

6-σ Quality Level 1.2558 

85% Reliability Level 0.8995 

90% Reliability Level 0.9281 

95% Reliability Level 0.9633 

 Table 2: Mean Thickness µt for various quality level
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