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ABSTRACT 

A design is robust when the performance targets have 
been achieved and the effects of variation have been 
minimized without eliminating the causes of the variation 
such as manufacturing tolerances, material properties, 
environmental temperature, humidity, operational wear 
etc.  In recent years several robust design concepts have 
been introduced in an effort to obtain optimum designs 
and minimize the variation in the product characteristics 
[1,2].  In this study, a probabilistic design analysis was 
performed on a catalytic converter substrate in order to 
determine the required manufacturing tolerance that 
results in a robust design.  Variation in circularity 
(roundness) and the ultimate shear stress of the 
substrate material were considered.   The required 
manufacturing tolerance for a robust design with 1,2 and 
3 sigma quality levels was determined.  The same 
manufacturing tolerance for a reliability based design 
with reliability levels of 85%, 90% and 95% was also 
determined and compared.  The methodology for 
implementing robust design used in this research effort 
is summarized in a reusable workflow diagram. 

 
INTRODUCTION 

Robust design is a methodology that addresses product 
quality issues early in the design cycle. The goal of 
robust design is to deliver customer expectations at 
profitable cost regardless of customer usage, 
degradation over product life and variation in 
manufacturing, suppliers, distribution, delivery and 
installation.  Since randomness and scatter is a part of 
reality everywhere, probabilistic design techniques are 
necessary to engineer quality into designs.  Traditional 
deterministic approaches account for uncertainties 
through the use of empirical safety factors.  The safety 
factors are derived based on past experience; they do 
not guarantee safety or satisfactory performance and do 
not provide sufficient information to achieve optimal use 
of available resources.  The probabilistic design process 

has not been widely used because it has been 
intimidating and tedious due to its complexity. 

In this research effort, probabilistic modeling of 
manufacturing and material variations for a catalytic 
converter substrate was considered.  Typical shapes of 
catalytic converter substrates are shown in Figure 1.  
The substrate used in this study has a cylindrical cross 
section and is enclosed in a cylindrical steel cover.  If the 
substrate is not a perfect cylinder the steel cover applies 
a non-uniform pressure along the circumference.  
Assuming that the maximum diameter of the substrate is 
Φmax and the minimum diameter is Φmin, we can 
characterize the variation in circularity or roundness δ
with their difference δ = Φmax - Φmin.  Due to 
manufacturing variations δ is considered a random input 
variable. 

 

Figure 1 Typical shapes of catalytic converter substrates 
 

In this study, it was assumed that a Gaussian distribution 
with mean value µδ and standard variation σδ

characterizes the variation in circularity δ.   
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Due to both material and manufacturing variation the 
ultimate shear stress τult exhibits randomness.  A pure 
shear test was performed on several substrates to 
determine the ultimate shear stress variation.  The mean 
value of ultimate shear stress is µτu  = 0.2868 MPa (41.6 
psi), the standard deviation is στu = 0.01724 MPa (2.5 
psi), the minimum value of the sample was τumin = 0.255 
MPa (37.0 psi) and the maximum value of the sample 
was τumax  = 0.31 MPa (45.0 psi). 

The objective of this study is to identify the supplier 
specification max σδ (maximum standard deviation of 
variation in circularity δ) in order to achieve a robust 
design of a desired sigma quality level. 

 
The Parametric Deterministic FEA Model 

A parametric finite element model of the substrate is 
shown in Figure 2 and was developed considering the 
following assumptions: 

1. The material of the honeycomb ceramic substrate is 
isotropic, linear elastic and the behavior is within 
small deflection linear theory limits. The modulus of 
elasticity is E = 4800 MPa and Poisson's ratio is ν = 
0.25 

2. Plain Strain Analysis is sufficient to accurately predict 
the maximum shear stress. 

3. There is no temperature effect on the material 
properties. 

4. The geometry, loading and behavior are symmetric 
about the horizontal and vertical axes, thus a 
quarter symmetry model can be used. 

5. The angle between the maximum and minimum 
diameter is 90°. 

6. The geometry of the FEA model can be 
represented by the first quadrant of an ellipsoid with 
the horizontal lower edge length equal to  
Φ/2 + δ/4, and the vertical left edge length equal to 
Φ/2 - δ/4, where Φ = 105.0 mm. 

7. The maximum pressure Pmax (in MPa) is a function 
of δ (in mm) and can be computed by the following 
equation: 
 
Pmax(δ) = a5δ5  + a4 δ

4  + a3 δ
3 + a2 δ

2  + a1 δ
1  +a0 

 

where: 
 
a0  =  -0.8155     
a1  =   5.5840    
a2  =  -8.3864     
a3  =   4.0882    
a4  =  -0.0694     
a5  =   0.0004 
 
Figure 3 shows a plot of this function (the maximum 
pressure Pmax versus δ) and the data points used for 
the curve fitting. 

8. As shown in figure 2 the maximum pressure is 
applied at the point of maximum diameter and varies 
sinusoidally to zero at the point of minimum 
diameter:  
    
 P(θ) = Pmax * cos (θ) 

 

 

Figure 2 Finite Model and Loading of the Substrate 

 
Figure 3 Maximum Pressure Pmax versus δ 

 
The input parameters of the model are variation in 
circularity δ and ultimate shear stress τult.  For any 
combination of the input parameters the solution to the 
parametric model can compute the maximum shear 
stress τmax.  Figure 4 shows a typical distribution of the 
magnitude of the displacements and figure 5 shows a 
typical maximum shear stress distribution. 
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Figure 4 Typical Displacement Distribution 

 

 

Figure 5 Typical Maximum Shear Stress Distribution 

 

We define a performance function G as the difference 
between ultimate shear stress and the maximum 
computed stress or G = τult -τmax.  If G remains positive 
at all times we will have a safe design. The performance 
function G is considered as the output variable and is a 
function of the input variables δ and τult.   

The Probabilistic FEA Model 

Uncertainty in the input parameters of the FEA model 
can be introduced by assuming certain randomness in 
the input parameters.  In this study, it was assumed that 
a Gaussian distribution with mean value µδ and standard 
variation σδ characterizes the variation in circularity δ.  

The mean value µδ was considered uncontrollable or a 
noise parameter with a constant value of  µδ = 1.05 mm.  

The standard variation σδ was considered as a 
controllable parameter and it was declared as an 
optimization design variable.  For various values of the 
standard variation σδ one may obtain a distribution for δ.  
Figure 6 shows the Probability Distribution of the input 
variable δ with a standard variation σδ = 0.01 mm. 

 
Figure 6. Probability Distribution of the Input Variable δ 

 

It was also assumed that truncated Gaussian distribution 
characterizes the ultimate shear stress of the substrate 
material. The mean value of ultimate shear stress µτu  = 
0.2868 MPa, the standard deviation στu = 0.01724 MPa, 
and the range 0.255 - 0.310 MPa were determined 
experimentally.  Figure 7 shows the Probability 
Distribution of the input variable στu with these values. 

 

Figure 7 Probability Distribution of the Input Variable στu 
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Since the two input variables are random the 
performance function G (where G = τult -τmax) exhibits 
randomness and is considered the output variable.  

 
Figure 8 Probability Distribution of the Performance 
Function G for Standard Variation σδ = 0.01 mm. 

 

Figure 9 Probability Distribution of the Performance 
Function G for Standard Variation σδ = 0.05 mm. 

Monte Carlo and the Central Composite Design 
response surface sampling techniques were 
implemented in determining the response distribution of 
the output variable for various values of the standard 
variation σδ. 

The probability distribution of the performance function G 
for standard variation σδ = 0.01 mm is shown in Figure 8.  
The mean value of the performance function is µG = 

0.08312 MPa and the standard deviation is σG = 0.01521 
MPA.  One may observe that the entire distribution of the 
performance function G remains on the positive side, 
indicating that for σδ = 0.01 the maximum shear stress 
does not exceed the ultimate shear stress.  In this case 
the probability that the performance function G is less 
than zero is 0 %, P[G<0] = 0%.  Figure 9 shows the
probability distribution of the performance function G for 
standard variation σδ = 0.05 mm.  The mean value of the 
performance function is µG = 0.07849 MPa and the 
standard deviation is σG = 0.04026 MPa.  One may 
observe that part of the distribution of the performance 
function G remains on the positive side indicating that for 
σδ = 0.05 the maximum shear stress exceeds the 
ultimate shear stress.  The area to the left of the zero 
(red line) indicates the probability of failure.  In this case 
the probability that the performance function G is less 
than zero is 4.24 %, P[ G< 0 ] = 4.24%.     

 

RESULTS OF RELIABILITY BASED ANALYSIS 

For various values of the standard deviation σδ the 
probabilistic FEA model can not only predict the mean 
value of the performance function µG, the standard 
deviation of the performance function σG but also the 
probability that the performance function is less than zero 
P[ G < 0 ].  Table 2 shows Mean, Standard Deviation of 
Performance Function G and Probabilities of Failure for 
various values of standard deviation of the circularity 
variation δ.  Figure 10 shows a plot of the probability that 
the performance function is less than zero versus the 
standard deviation of δ.  One may observe that for 
values of σδ = 0.0522, 0.0672 and 0.0818 mm the 
probability of failure is 5%, 10% and 15% respectively. 

 

Figure 10 Probability that the Performance Function Is 
Less Than Zero Versus The Standard Deviation Of δ 
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This graph can be used as a design guide to select the 
required standard deviation of δ to achieve the desired 
reliability level.  For example if the desired reliability level 
is 95% the maximum standard deviation of δ should be 
0.052 mm. 

 

RESULTS OF ROBUST ANALYSIS 

The robust design optimization approach not only shifts 
performance mean to the target value but also reduces a 
product’s performance variability, achieving the desired 
sigma level robustness on the key product performance 
characteristics with respect to the quantified variation.   

In this study a typical formulation of an n-sigma level 
robust design approach can be stated as: 

Find the value of the maximum standard deviation of δ in 
order to achieve positive values of the expression  

µG - n σG > 0 

Figure 11 shows a sensitivity plot of three curves for 1, 2 
and 3 σ versus the standard deviation of δ.  For a three σ 
quality level the standard deviation of δ cannot be more 
than σδ = 0.0324 mm.  For a two σ quality level the 
standard deviation of δ cannot be more than σδ = 0.0488 
mm and for a one σ quality level the standard deviation 
of δ cannot be more than σδ = 0.0812. 

Figure 11 One, two and three σ quality level curves 
versus the standard deviation of δ 

 

 

CONCLUSIONS 

• The example presented demonstrates the 
advantage of using an automated probabilistic 
design process that enables engineers to identify 
better designs that meet the performance 
objectives and are less sensitive to 
manufacturing variations. 

• For a given reliability goal (i.e. 95%) the 
maximum standard deviation of the circularity 
variation can be determined using the design 
process described.  The results summary is 
shown in table 1.  A good correlation between 
these results and the verification tests was 
found. 

• For a given sigma quality level (i.e. six-sigma) 
the maximum standard deviation of circularity 
variation can be determined using the design 
process described.  The results summary is 
shown in table 1. 

• By incorporating the physical scatter into the 
model, the risk of failing legal or consumer tests 
can be minimized. 

Table 1 Max σδ for various quality levels 

Quality / Reliability Maximum σδ (mm) 

1 σ Quality Level 0.0812 

2 σ Quality Level 0.0488 

3 σ Quality Level 0.0324 

85% Reliability Level 0.0818 

90% Reliability Level 0.0672 

95% Reliability Level 0.0522 
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SYMBOLS 

Φmax  maximum diameter of substrate 

Φmin minimum diameter of substrate 

δ  variation in circularity (roundness) = Φmax - Φmin 

µδ mean value  of  δ 

σδ standard variation of δ 

τult  ultimate shear stress of substrate material 

µτu   mean value of ultimate shear stress 

στu  standard deviation of ultimate shear stress 

G performance function G = τult -τmax  

µG   mean value of performance function G 

σG  standard deviation of performance function G 

θ CC angle of a radial line with the horizontal 
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Table 2 Mean, Standard Deviation of Performance Function G and Probabilities of Failure for various values standard 
deviation of the circularity variation δ 

 
 

σδ  
(mm) 

µG  
(Mpa) 

σG  
(Mpa) 

P[ G<0] 
(%) 

Min G 
(Mpa) 

Max G 
(Mpa) 

Standard 
Deviation of δ 

Mean G Value Standard 
Deviation of G 

Probability that 
G < 0    

Minimum 
G Value 

Maximum 
G Value 

0.01 0.08312 0.01521 0.000 0.1287 0.0342 

0.02 0.08311 0.01973 0.001 -0.0053 0.1478 

0.03 0.08202 0.02557 0.204 -0.0419 0.1571 

0.04 0.08048 0.03254 1.562 -0.0716 0.1623 

0.05 0.07849 0.04026 4.24 -0.14343 0.1637 

0.06 0.07604 0.04911 7.634 -0.20243 0.1697 

0.07 0.07320 0.05812 10.94 -0.26923 0.1746 

0.08 0.06988 0.06807 14.41 -0.38628 0.1784 

0.09 0.06612 0.07883 17.68 -0.45971 0.1830 

0.095 0.06408 0.08487 19.26 -0.50724 0.1855 

0.10 0.06119 0.09044 20.65 -0.54985 0.1873 

 


