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Abstract  
 
A design is robust when it is not sensitive to variations in 
noise parameters such as manufacturing tolerances, material 
properties, environmental temperature, humidity, etc.  In 
recent years several robust design concepts have been 
introduced in an effort to obtain optimum designs and 
minimize the variation in the product characteristics.  
Increasing the pressure on a PEM (Proton Exchange 
Membrane) fuel cell's MEA (Membrane Electrode 
Assembly) leads to increasing the electric conductivity and 
reducing the permeability of the assembly.  In this study, a 
probabilistic FEA analysis was performed on a simplified 
fuel cell stack in order to identify the effect of material and 
manufacturing variations on the MEA's pressure 
distribution.  The bi-polar flow plate thickness, the modulus 
of elasticity and the end plate bolt loading were considered 
as randomly varying parameters with given mean and 
standard deviation.  The normal stress uniformity of the 
MEA was determined in terms of the probabilistic input 
variables.  The methodology for implementing robust design 
used in this research effort is summarized in a reusable 
workflow diagram. 
 
 
Introduction 
 
The need for innovative tools is apparent now more than 
ever as more complex design requirements are surfacing 
such as cost, performance, safety, quality, time to market, 
short life cycle, environmental impacts, WOW aesthetics 
and major changes in industries' business models.  
Moreover, in new or emerging industries such the fuel cell 
industry the development time from concept to production is 
being  compressed  significantly.    Furthermore  robust  fuel 
 

 
 
cell designs are necessary in order for the to successfully 
compete with mature technologies. 
 
Most organizations address the quality issue by focusing on 
implementation of Six Sigma in their manufacturing 
environments. Most of the manufacturing cost over the life 
cycle of a product is determined by its initial design, 
therefore quality issues must be addressed early in the 
design cycle with robust design methodologies.   
 
The goal of robust design is to deliver customer 
expectations at affordable cost regardless of customer usage, 
degradation over product life and variation in 
manufacturing, suppliers, distribution, delivery and 
installation.  Since randomness and scatter are a part of 
reality everywhere, probabilistic design techniques are 
necessary to engineer quality into designs.  Traditional 
deterministic approaches account for uncertainties through 
the use of empirical safety factors.  The safety factors are 
derived based on past experience [Ref 5]; they do not 
guarantee satisfactory performance and do not provide 
sufficient information to achieve optimal use of available 
resources.  The probabilistic design process has not been 
widely used because it has been intimidating and tedious 
due to its complexity.  In recent years, CAD and FEA codes 
have introduced integrated design space exploration (PTC's 
Behavioral Modeling [Ref 14]) and probabilistic systems 
(e.g. ANSYS' PDS [Ref 1, 3, 5 and 7]) that make 
probabilistic analysis simple to setup if the control and the 
noise parameters are identifiable [Ref 1].  Control 
parameters are those factors which the designer can control, 
such as geometric design variables, material selection, 
design configurations and manufacturing process settings, 
etc. [Ref 8].  Noise parameters on the other hand are factors  
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Figure 1 Workflow for Robust Optimization 

 
 
that affect the design's function and are beyond the control 
of the designer or too expensive to control or change.   
Examples of noise parameters are material property 
variability, manufacturing process limitations, 
environmental temperatures, humidity, component 
degradation with time etc. 
 
One of the keys to finding optimal and robust designs is 
exploring the nature of the design space.  The goal is to 
identify the key design parameters that have the most impact 
on the product attributes.  This paper describes a design for 
six-sigma technique that integrates FEA, probabilistic and 
robust design tools within the CAD environment. An 
example of a simplified fuel cell stack is used and the effect 
of material and manufacturing variations on the MEA's 
pressure distribution is identified. 
 
Robust Design Process 
 
The robust design process shown in Figure 1 has been 
implemented to evaluate the effect of bolt stack loading on 
the MEA pressure distribution.  All of the symbols and 

processes will be described in subsequent sections. The 
effect of variation in the material properties such as the 
modulus of elasticity of the bi-polar plates Ebp, the bi-polar 
plate thickness tbp, the MEA thickness tmea and the bolt 
loading F have been also assessed.  
  
This robust optimization workflow includes three different 
processes: the parametric deterministic model (PDM), the 
probabilistic design loop, and the design optimization loop.   
 
 
The Parametric The Deterministic Model  
 
A parametric finite element model of a simplified fuel cell 
stack assembly has been developed for the PDM process.  
Figure 2 shows the finite element model of the MEA and bi-
polar plates assembly that contains twenty cells.  The 
elements are color-coded based on their material properties.  
The material behavior was assumed to be linear elastic.   
The modules of elasticity and Poisson's ratios of the 
membrane, the bi-polar plate and the end plate are shown in 
table 1.  The spacing of the flow and cooling channels, and 



the thickness of the membrane and bi-polar plates are fully 
parametric.  The dimensions shown are presented for 
demonstration purposes only; they don't necessarily reflect 
the actual hardware dimensions.  A pair of aluminum end 
plates has been added on either side of the stack.  Four bolts 
hold the stack together by imposing a 640 N force on each 
of the four corners of the end plates.   Since the bolt load 
was applied at 8 nodes the nodal force considered was F = 
80 N.  Figure 9 shows the loading vectors applied at the end 
plate model.  Under this loading condition the finite element 
model can easily predict the displacement and stress 
distribution on every component of the model.  The first 
membrane's (closest to the end plate) maximum and 
minimum compression stress minσztop and maxσztop can be 
easily found.  The difference between maximum and 
minimum compression stress can be defined as the 
differential compression stress in the first membrane ∆σztop .  
The same set of values of stresses can be extracted from the 
membrane in the middle of the stack, specifically the 
maximum compression stress maxσzmid, the minimum 
compression stress minσzmid and the differential 
compression stress ∆σzmid.   
 

 
 

Figure 2.  Finite Element Model of the MEA and Bi-Polar 
Plates Assembly 

 
 

Figure 3 Undeformed Shape of a Portion of the Model 

 

 
 

Figure 4 Deformed Shape of a Portion of the Model 

Figure 3 shows the un-deformed shape of a close up portion 
of the model.  Figure 4 shows the deformed shape of the 
same region with unit displacement scale.  One may observe 
that the membrane deformations are much larger than the bi-
polar plate' deformations. 
 

Table 1. Material Properties 
 

 E (MPa) ν 
Membrane 21 0.001 
Bi-polar Plates 5100 0.300 
End Plate 70000 0.300 

 
Figure 5 shows the Von Mises stress distribution and Figure 
6 shows the compressive stress distribution of the same 
portion of the model.  Since the compressive stress is 
negative the red portion of the distribution corresponds to 
zero stress level and the blue portion of the distribution 
corresponds to high negative values.   



 
 

Figure 5 Von Mises stress distribution of a portion of the 
model 

 
 

 
 

Figure 6  Compressive Stress σz  Distribution of a Portion of 
the Model 

 
In Figure 6 one may observe the "load paths" (yellow flow 
streams) that carry the end plate loading from one side to 
another.  Figure 7 shows the Von Mises stress distribution 
of a small portion of the model and Figure 8 shows a plot of 
the principal stress vectors on a small portion of the model. 
 
 
Effect of Bolt Load Variation on the MEA'S 
pressure uniformity 
 
Due variations in the assembly process the magnitude of the 
bolt forces may exhibit variation.  For this analysis all 
geometric parameters, material properties and the first bolt 
load were held constant at F1 = 8*80 N (F1 = 640 N).   

 
 

Figure 7 Von Mises stress distribution of a small portion of 
the model 

 
 

 
 

Figure 8 Principal Stress Vectors on a small portion of the 
model 

 
The other three bolt loads F2, F3 and F4 exhibit variation 
with normal distribution of mean values: 
 

µF2 = µF3 = µF4 = 8*80 N 
 
and standard deviations: 
 

σF2 = σF3 = σF4 = 8*4 N 
 
The random values of the three bolt loads are independent of 
each other.  Figure 10 shows the probability density 
functions of the three bolt loads F2, F3 and F4.  In this study 
all other geometric and material parameters remain constant 
in the three-dimensional finite element model. 



 
Figure 9 Loading Vectors at the Endplate 

 
 

 
 

Figure 10 Probability Density Functions of the three bolt 
loads F2, F3 and F4 

 
 

Figure 11  Histograms of maximum maxσztop and 
differential compressive stress ∆σztop in the top MEA 

 
 

 
 

Figure 12  Histograms of maximum maxσzmid and 
differential compressive stress ∆σzmid in the middle MEA 



For a given set of the mean values of these bolt loads (input 
design variables) and the assumed distributions one may 
easily generate a large set of random numbers for each 
variable.  Several sampling techniques are available to 
generate combination sets of these design variables such as 
Monte Carlo, Latin Hypercube Sampling (LHS), Central 
Composite, Box-Behnken Matrix, etc.  If the "experiment" 
is fast and inexpensive Monte Carlo and LHS sampling 
techniques work well.  In this case the "experiment" is a 
structural finite element analysis.  If the "experiment" is 
time consuming and computationally expensive Box-
Behnken Matrix in combination with the response surface 
technique is preferred.  In this example Box-Behnken 
Matrix sampling was used in combination with Forward-
stepwise-regression. 
 
The probabilistic design loop is fully automated.  If one 
views this loop as a transfer function the mean values and 
standard deviations of the three design variables (bolt loads) 
can be considered as inputs (µF2, µF3, µF4, σF2, σF3, σF4 ) and 
the mean and standard deviation of the attributes (maximum 
σz and differential compressive stress ∆σz in the top and 
middle MEAs) can be considered as outputs (µσztop, σσztop, 
µ∆σztop, σσ∆ztop,  µσzmid, σσzmid , µ∆σzmid, σ∆σzmid).  Figure 1 
shows a graphical representation of the data flow for this 
loop. 
 
Execution of the probabilistic design loop will result in a 
probabilistic distribution of the response attributes.  The 
mean value and standard deviation of the maximum 
compressive stress σz in the top MEA are µσztop = -0.795 
MPa and σσztop = 0.0176 MPa.  The mean value and 
standard deviation of the differential compressive stress ∆σz 
in the top MEA are  µ∆σztop = 1.127 MPa and σσ∆ztop = 0.025 
MPa.  Figure 11 shows the histograms of maximum 
maxσztop and differential compressive stress ∆σztop in the top 
MEA.  Using these values one can quantify the quality of 
the design and determine the sigma level by solving for "n" 
in the following equation. 
 

            µ∆σztop - n * σ∆σztop  ≤ ∆σTarget                      Eq(1) 

 
where σTarget is the target or maximum allowable differential 
compressive stress ∆σz. 
 
The mean value and standard deviation of the maximum 
compressive stress σz in the middle MEA are µσztop = -0.70 
MPa and σσztop = 0.0176 MPa.  The mean value and 
standard deviation of the differential compressive stress ∆σz 
in the top MEA are µ∆σztop = 1.00 MPa and σ∆σztop = 0.024 
MPa.  Figure 12 shows the histograms of maximum 
maxσztop and differential compressive stress ∆σztop in the 
middle MEA.  The numerical results are summarized in 
Table 2. 
 
 

 
 

Figure 13 Displacement Distribution at mean values of the 
design variables 

 
The top MEAs' maximum compressive stress maxσz and 
differential compressive stress ∆σz are about 13% higher 
that the equivalent values of the middle MEA.  Only the first 
few MEAs at the top and bottom of the stack experience the 
higher stress level "edge effect" as shown in Figure 13.  The 
compliance of the "soft goods" of the first few cells provides 
uniformity in pressure distribution at the majority of the 
MEAs.  
 

Table 2. Effect of Bolt Load Variation on the MEA'S 
pressure uniformity 

 

MEA Stress Mean Value  
µ (MPa) 

Standard Deviation 
σ (MPa) 

max σz -0.795 0.0176 
Top 

max ∆σz 1.127 0.025 

max σz -0.700 0.017 
Middle 

max ∆σz 1.000 0.024 



Effect of Bolt Load, Material and Thickness 
Variation on the MEA'S pressure uniformity 
 
In this case study four input design variables were 
considered having variation, the MEA thickness tMEA, the 
bipolar plate thickness tBP, the modulus of elasticity of the 
bipolar plates and the bolt load of two of the bolts F2. 
 
It was assumed that the 1st and 4th bolt loads remain 
constant at F1 = F4 = 100 N.  The other two bolt loads, F2 
and F3, exhibit variation with normal distribution of mean 
values: 
 

µF2 = µF3 =100 N 
 
and standard deviations: 
 

σF2 = σF3 = 5 N 
 

 
 

Figure 14 Probability Density Functions of case 2 Design 
Variables F2, F3, EBP, tBP and tMEA 

The random values of the two bolt loads are dependent.  
Figure 14a shows the probability density functions of the 
two bolt loads, F2 and F3.  The modulus of elasticity of the 
bipolar plates EBP exhibits variation with normal distribution 
and mean value µEBP = 5100 MPa and standard deviation 
σEBP = 255 MPa.  Figure 14b shows the probability density 
functions of the modulus of elasticity variation. 
 
The bipolar plate thickness tBP exhibits variation with 
normal distribution and mean value µtBP = 1.27 mm and 
standard deviation σtBP = 0.06 mm.  Figure 14c shows the 
probability density functions of the bipolar plate thickness 
variation.  The MEA thickness tMEA exhibits variation with 
normal distribution and mean value µtMEA = 0.457 mm and 
standard deviation σtMEA = 0.022 mm.  Figure 14d shows the 
probability density functions of the MEA thickness 
variation.   
 
Table 3. Effect of Bolt Load, Modulus of Elasticity, Bipolar 
Plate and MEA thickness Variation on the MEA'S pressure 

uniformity 
 

MEA 

Loc. 

Max 
Stress 

Mean 
Value  

µ (MPa) 

Standard 
Deviation 

σ  
(MPa) 

Skewness 

Coeff. 

 σz -7.34 2.081 -1.705 
Top 

∆σz 6.388 2.104 1.822 

σz -5.58 0. 403 -2.760 
Middle 

∆σz 5.846 0. 434 2.654 

 
Execution of the probabilistic design loop for these load 
combinations will result in a probabilistic distribution of the 
response attributes.  A summary of the results is presented 
in table 3. The mean value and standard deviation of the 
maximum compressive stress σz in the top MEA are µσztop = 
-7.34 MPa and σσztop = 2.081 MPa.  The mean value and 
standard deviation of the maximum compressive stress σz in 
the middle MEA are µσzmid = -5.58 MPa and σσzmid = .0403 
MPa.  Figure 15 shows the histograms of the maximum 
compressive stresses on the top and middle MEAs maxσztop 
and maxσzmid.  Although all input parameters exhibit 
variation with normal distributions the output parameters 
exhibit a high degree of asymmetry of their distribution 
around their mean.  The skewness coefficient characterizes 
the degree of asymmetry of these distributions and is shown 
in table 3. Both compressive stress maxσz distributions have 
negative skewness, that indicates distributions with an 
asymmetric tail extending towards more negative values as 
shown in figure 15.  Both differential stress max∆σz 
distributions have positive skewness, that indicates a 



distribution with an asymmetric tail extending towards more 
positive values as shown in figure16. 
 
The mean value of the compressive stress of the top of the 
MEAs is significantly higher (30%) than the corresponding 
value of the middle MEA.  In addition the standard 
deviation of the top MEA is 5 times larger than the middle 
MEA indicating a large scatter of values.  In other words the 
manufacturing, material and loading imperfections have 
great effect on the stress values of the top MEA.  This 
conclusion can also be made for the first few MEAs on the 
top and bottom of the fuel cell stack.  Due to the compliance 
of the "soft goods" the majority of the MEAs appear to be 
insensitive to the manufacturing variations within the range 
considered in this research effort.  Figure 17 shows a bar 
chart of the value of the maximum differential compressive 
stress in all the MEAs of the model.  In this case the "edge 
effect" is extended to the top four MEAs and their value 
monotonically decreases as we move from the endplate to 
the center of the stack.  
 
 
 

 
 

Figure 15 Histograms of maximum compressive stress in the 
top and middle MEA 

 
 

Figure 16 shows the histograms of the maximum differential 
compressive stresses on the top and middle MEAs.  Similar 
conclusions can be made for the differential compressive 
stress of the top and bottom MEAs. 
   
The probabilistic loop can generate a large number of data 
points using the response surface function.  In this case 
10,000 points were generated to examine the effect of 
manufacturing variations.  Using this data it's relatively easy 
to extract the sensitivity of the input variables to the output 
variables.  Figure 18 shows the sensitivity of all the design 
variables on pressure uniformity of the top and middle 
membranes.  The bipolar plate thickness and the MEA 
thickness are the most significant factors on the top 
membranes' pressure uniformity as shown in figure 17.  The 
bolt force and modules of elasticity of the bipolar plates are 
insignificant factors on the top membranes' pressure 
uniformity.  The bolt force, the MEA thickness and the 
modules of elasticity of the bipolar plates are the most 
influential input variables on the pressure uniformity of the 
MEAs in the middle of the stack. 
 
 

 
 

Figure 16 Histograms of maximum differential compressive 
stress in the top and middle MEA 

  
 



 
 

Figure 17  Bar chart of differential compressive stress in all 
the MEAs 

 
Conclusions 
 
For the set of design variables and their range examined the 
following conclusions can be made: 

• In the bolt load variation case the top MEAs' 
maximum compressive stress maxσz and 
differential compressive stress ∆σz are about 13% 
higher that the equivalent values of the middle 
MEA. 

• For the case where all design variables have 
variation the mean value of the compressive stress 
of the top of the MEAs is significantly higher 
(30%) than the corresponding value of the middle 
MEA. 

 
 

Figure 18 Sensitivity of Design Variables on Pressure 
Uniformity 

 
• Only the first few MEAs at the top and bottom of 

the stack experience the higher stress level "edge 
effect."  The compliance of the "soft goods" of the 
first few cells provides uniformity in pressure 
distribution at the majority of the MEAs.  

• The bolt force, the MEA thickness and the modules 
of elasticity of the bipolar plates are the most 
influential input variables on the pressure 
uniformity of the MEAs in the middle of the stack. 

• The probabilistic analysis described allows 
engineers to gain greater insight into complex 
engineering processes that involve statistical 
variations and enables them to identify better 
designs that meet the performance objectives and 
are less sensitive to manufacturing variations. 
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