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ABSTRACT 

The National Renewable Energy Laboratory (NREL) and 
Plug Power Inc. have been working together to develop fuel cell 
modeling processes to rapidly assess critical design parameters 
and evaluate the effects of variation on performance.  This 
paper describes a methodology for investigating key design 
parameters affecting the thermal performance of a high 
temperature, polybenzimidazole (PBI)-based fuel cell stack.  
Nonuniform temperature distributions within the fuel cell stack 
may cause degraded performance, induce thermo-mechanical 
stresses, and be a source of reduced stack durability.  The three-
dimensional (3-D) model developed for this project includes 
coupled thermal/flow finite element analysis (FEA) of a multi-
cell stack integrated with an electrochemical model to 
determine internal heat generation rates. Sensitivity and 
optimization algorithms were used to examine the design and 
derive the best choice of the design parameters.  Initial results 
showed how classic design-of-experiment (DOE) techniques 
integrated with the model were used to define a response 
surface and perform sensitivity studies on heat generation rates, 
fluid flow, bipolar plate channel geometry, fluid properties, and 
plate thermal material properties.  Probabilistic design methods 
were used to assess the robustness of the design in response to 
variations in load conditions.  The thermal model was also used 
to develop an alternative coolant flow-path design that yields 
improved thermal performance. Results from this analysis were 
recently incorporated into the latest Plug Power coolant flow-
path design.  This paper presents an evaluation of the effect of 
variation on key design parameters such as coolant and gas flow 
rates and addresses uncertainty in material thermal properties. 
INTRODUCTION 

Engineers at the National Renewable Energy Laboratory 
(NREL) have been working to adopt advanced design processes 
and apply them in the development of energy efficient 
technologies.  Often the industries developing these 
technologies do not have the dedicated engineering and 
analytical resources to fully develop the necessary integrated 
design processes.  NREL has worked closely with some of these 
partners over the past several years to apply virtual prototyping 
methods that couple structural, thermal, and fluid flow 
simulations to variational techniques, advanced design 
optimization, and quality and performance goals.  In the past 
two years, the NREL team has used this expertise in 
collaboration with Plug Power Inc. to advance optimal design 
methodologies for fuel cells and improve product development 
time and costs by reducing the number of physical prototypes 
and laboratory tests required.  This collaboration is helping to 
overcome technical barriers, reduce fuel cell development time 
and costs, and drive innovation.  The objective of this project 
was to develop a fuel cell stack thermal modeling process to 
assess design sensitivity on fuel cell thermal performance and 
assist in the development of improved heat transfer 
characteristics. 

Nonuniform temperature distributions within the fuel cell 
stack may cause degraded performance, induce thermo-
mechanical stresses, and be a source of reduced stack durability.  
The project described here involved coupling Plug Power’s 
electrochemical model with a 3-D thermal/fluid finite element 
analysis (FEA) model developed by NREL. The electro-
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chemical model was used to predict a nonuniform heat 
generation map within the membrane electrode assembly 
(MEA).  This heat generation map was then processed and 
applied to the thermal/flow FEA model that predicts 3-D plate, 
fluid, and membrane temperatures.  The membrane 
temperatures were fed back into the electrochemical model and 
the process was repeated until convergence was achieved.  The 
thermal/flow model uses pipe flow elements for rapid analysis 
of the 3-D stack’s thermal performance. The modeling process 
described here demonstrates the integration of design-of-
experiment (DOE) and probabilistic design techniques to 
perform sensitivity and variation studies on fuel cell heat 
generation rates, fluid flow, bipolar plate channel geometry, 
fluid properties, and plate thermal material properties. 

NOMENCLATURE 
CAD – computer-aided design 
CAE – computer-aided engineering 
CCD – central composite design 
DOE – design of experiments 
FEA – finite element analysis 
MEA – membrane electrode assembly 
NREL – National Renewable Energy Laboratory 
PBI – polybenzimidazole 
PDM – probabilistic design methods 
3-D – three dimensional 

 

TECHNICAL APPROACH 

 A thermal FEA model of Plug Power’s high-temperature 
polybenzimidazole (PBI)-based stack was built using actual 
CAD geometry of the bipolar plates, fluid flow channels, and 
material properties supplied by Plug Power.  Initial FEA 
modeling was carried out on a single-cell (two bipolar plates, 
MEA, and insulation) model.  A second FEA model of a four-
cell stack was then developed and incorporated into the 
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Figure 1.  Single-cell and four-cell stack schematic 
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modeling process.  Schematic diagrams of the single-cell and 
four-cell stack are shown in Figure 1.  A key thermal design 
consideration is the number of cells per cooler.  The single-cell 
model has one full cooler per cell and the four-cell model has 
four cells per cooler.  Note that two-cell and eight-cell designs 
can also be analyzed using the same models by deleting one of 
the coolers and applying symmetry expansion to single-cell and 
four-cell models respectively.   

 Images from the two FEA models are shown in Figure 2. 
The solid components of the fuel cell were modeled using 8-
node 3-D solid tetrahedral elements for thermal FEA.  The 
fluids (hydrogen, air, and coolant) were modeled with coupled 
thermal-fluid pipe elements in ANSYS.  Convection heat 
transfer between the solid and the hydrogen, air, and coolant 
pipes was modeled using convection surfaces and film 
coefficients calculated from the fluid flow, channel geometry, 
and fluid physical properties. 

Figure 2. Single-cell and four-cell stack finite element 
models 

 The ANSYS pipe element is a 3-D element with the ability 
to conduct heat and transmit fluid between its two primary 
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nodes (1).  Heat flow is due to conduction within the fluid and 
the mass transport of the fluid. Convection is accounted for 
using additional surface elements.  The film coefficient between 
the surface elements and the pipes is related to the fluid flow 
rate.  Figure 3 shows the network of pipe elements for air, 
hydrogen, and coolant for the single-cell stack.  Figure 4 shows 
the pipe elements, convection surface elements, and connecting 
elements between the pipe nodes and the convection surfaces 
elements. 

Figure 4. Convection elements (yellow) connect pipe 
elements (blue) to surface elements (grey) 

  
The use of pipe elements allowed us to model heat transfer 
between the solids and fluids without detailed computational 
fluid dynamics (CFD) within the flow channels.  This approach 
assumes uniform flow through the channel cross-section, and 
allows rapid solutions that can be used to assess relative 
impacts as well as sensitivity studies and the effects of load and 
material variations by integrating the model with DOE 

Figure 3. Network of pipe elements, coolant (red), 
hydrogen (magenta), air (cyan) 
3

techniques and probabilistic design methods.  Solutions of the 
single-cell stack model were obtained in a few minutes.  This 
allows many design iterations to be evaluated rapidly.  By 
comparison, similar CFD analyses that model actual flow 
channel geometry on real-world fuel cell designs may require 
billions of finite elements, intensive computational power, and 
many hours (even days) to converge on a single solution.  

 The thermal FEA model developed here requires internal 
heat generation at the MEA as an input.  Two possible modeling 
approaches for internal heat generation were evaluated.  The 
first was to use an average heat generation rate and apply it 
uniformly across the MEA.  A second approach was to obtain a 
nonuniform “map” of the heat generation rates based on an 
electrochemical model of the cell performance.  At the time of 
this study, Plug Power used an internally developed, proprietary 
spreadsheet model to predict current density and heat 
generation rates based on an input temperature map.  The 
spreadsheet model requires a temperature map as input and 
iterates until a converged solution is achieved.  An output from 
this model is a nonuniform map of heat generation rates along 
the X and Y coordinates of the MEA.  The predicted heat 
generation map (as shown in Figure 5) was then used as input 
into the stack thermal FEA model. 

 Figure 5. Nonuniform heat generation map 

 The temperature map from the spreadsheet model included 
9000 heat generation points with an X-Y discretization of 
approximately 2 mm.  The FEA mesh included approximately 
4500 nodes with discretization between 3 mm and 3.5 mm.  A 
Matlab script was used for the preliminary step of interpolating 
the predicted heat generation map from the electrochemical 
model to the FEA model nodal coordinates.  The interpolated 
nonuniform heat generation rates were then applied to the 
thermal FEA model and solved for the resultant temperature at 
the nodes.  These temperatures were then interpolated back to 
the spreadsheet grid and compared to the initial temperature 
Copyright © 2006 by ASME



inputs.  The overall process (electrochemical model, data 
processing, and thermal FEA) was repeated until adequate 
convergence was achieved.  A diagram of the overall process 
and an example of the process convergence are shown in Figure 
6 and Figure 7 respectively.  The overall process converged to 
within a root mean square value of 1 x 10-4 root mean square 
after four iterations. 

 
 

Figure 6. Analysis process integration 

The next steps were to develop a parametric modeling process, 
perform design space investigations using design-of- 
experiment (DOE) techniques, and then evaluate the effect of 
load variations using probabilistic design methods (PDM).  
These steps required a fast, flexible, and robust model to 
converge on solutions over a wide variety of input levels.  Both 
the DOE study and the PDM analysis required a parametric 
analysis file to perform the following functions: 

1. Build the model parametrically based on the range of 
input variables,  

2. Calculate input values that are altered by varying 
design parameters (e.g., inlet flow velocities based on 
updated channel geometries), 

3. Assign material properties based on the input 
conditions, 

4. Apply updated boundary conditions,  
5. Obtain the solution,  and 
6. Retrieve output data from the model and calculate 

output performance parameters.  
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Figure 7. Process convergence example 

 
 

Copyright © 2006 by ASME



The output thermal performance variables chosen for this study 
included: maximum MEA temperature, temperature distribution 
across the MEA, and coolant pressure drop. 

 

The DOE study required the following additional process steps: 

1. Define the design variables and ranges to be studied 
(see Table 1 in the Results section). 

2. Define the output performance parameters to be 
investigated.  Here we chose the maximum MEA 
temperature (Tmax-MEA), the temperature differential 
across the MEA surface (dTMEA), and the coolant 
pressure drop (dPcoolant) as output performance 
measures. 

3. Select an experimental design based on the model 
solution time – such as full factorial, partial factorial, 
and Taguchi screening approaches (2).  For this study, 
full- and half-factorial approaches were used for the 
final analysis because the simulation time was 
relatively short (several minutes).  A more efficient 
three-level Taguchi L18 screening design was also 
used early in the analysis to help choose the variables 
to be included in the study. 

4. Set up and run the DOE loop using the parametric 
analysis file. 

5. Develop a polynomial fit of the output variables using 
regression techniques. 

6. Evaluate input parameter sensitivities using Pareto 
charts and sensitivity analysis. 

 The final major step that we used in the overall analysis 
process was to setup and perform a PDM analysis to evaluate 
the effect of load variations on the system thermal performance.  
The PDM analysis included the following steps: 

1. Define the random input variables and ranges to be 
studied.  For the PDM analysis the input parameters 
were specified by a mean value, standard deviation, 
and statistical distribution of the inlet coolant 
temperature, heat generation, and coolant pressure 
drop.  Gaussian input variable distributions were 
specified with the nominal design value for the mean 
and a total random variation range of +/- 5% for each 
input variable.   

2. Define the random output performance parameters to 
be investigated.  Tmax-MEA and the dTMEA were 
chosen as output performance measures. 

3. Select a PDM design tool or method, such as Monte-
Carlo or response surface analysis.  A response surface 
methodology was used here using a central composite 
design (CCD) (2). 

4. Set up and run the PDM loop using the parametric 
analysis file.  
5

5. Fit the response surface using a regression technique – 
here we used forward step-wise regression. 

6. Evaluate the quality of the response surface with 
statistical measures such as the R2 value and standard 
error. 

7. Develop statistical distribution of the output variables 
based on the input distributions. 

8. Evaluate the results. 

PDM analysis results can be evaluated with histograms 
showing the output performance distributions, scatter charts, 
comparison to upper and lower control specifications, and with 
reference to sigma quality levels.(3,4,5,6) 

With a fast and flexible model, DOE and PDM studies of 
this type can be used to evaluate hundreds of design cases and 
input variations early in the design process.  This can help us 
define critical design parameters and understand the effects of 
input variations and uncertainty.  Results of the analyses can be 
used to guide technology development decisions, contribute to 
manufacturing tolerance specifications, streamline experimental 
programs, and reduce the number of prototypes that are built 
and tested. 

RESULTS 

We performed an initial thermal analysis with the four-cell 
stack FEA model to determine the relative effects of using the 
nonuniform heat generation rates predicted by the Plug Power 
model versus applying an equivalent average uniform heat 
generation rate within the MEA.  This analysis was performed 
to decide whether the nonuniform heat generation model would 
be required in future analyses.  

Temperature profiles for the four-cell stack are shown in 
Figure 8.  This figure shows the relative temperature profile of 
the MEA for the uniform and nonuniform heat generation cases.  
A noticeable difference in the temperature profiles was 
observed for these two cases.  Next, a histogram of the 
temperature distribution across the MEA surface was generated 
to compare the two cases in more detail.  A similar set of 
analyses was also run for uniform and nonuniform heat 
generation with reversed coolant flow directions (i.e., switching 
the inlet and outlet conditions).  Figures 8 and 9 show the 
temperature distributions for the uniform and nonuniform (or 
“mapped”) heat generations.  While the overall average 
temperature of the MEA was the same for the uniform and 
nonuniform heat generation cases,  the shape of the distribution 
(e.g., location of maximum temperature regions) and the 
temperature differential (Tmax – Tmin) were significantly 
different.  From these analyses, we decided to use the mapped 
heat generation for all future runs. 
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Figure 8. MEA temperature distributions for uniform 
and nonuniform heat generation 

 

Figure 9. MEA temperature distributions for forward 
and reverse coolant flow 

 
 

Figure 10. MEA temperature distributions for base and 
new coolant channel designs 

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Difference from mean temperature (C)

non_uniform
uniform

non-uniform

uniform

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Difference from mean temperature (C)

forward flow
reverse flow

reverse flow

forward flow

0%

5%

10%

15%

20%

25%

30%

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Difference from mean temperature (C)

Pe
rc

en
ta

ge
 o

f N
od

es
 a

t T
em

pe
ra

tu
re

Base Channels
New Channels
0.4 psi base channels

new channels

new channels
0.4 psi
6

Based on the results from the previous analyses, NREL 
proposed an alternative coolant flow-path design.  The key 
features of the alternative coolant flow-path design include: a 
more direct path to the high-temperature region of the 
membrane, weighting of the spacing of coolant flow channels 
based on the shape of the nonuniform heat generation map, and 
a significantly shorter coolant flow path.  The results from a 
thermal analysis of the new design are summarized in the 
temperature distributions shown in Figure 10.  Three 
temperature distributions are shown. The first is the base case, 
the second shows the new coolant channels with the same mass 
flow rate as the base case, and the third shows the new channels 
with the same coolant pressure drop (0.4 psi) as the base case.  
Since the alternative design has a significantly shorter flow 
path, the coolant flow rate was higher for the same pressure 
drop (i.e., more flow for the same required pumping power).  
Figure 10 shows an improved temperature distribution for the 
alternative coolant flow path (new channels).  For the same 
coolant pressure drop, the overall average MEA temperature 
was approximately 1% lower than the base case, and the 
temperature differential across the surface of the MEA was 60% 
lower than the base case.  Design concepts from this analysis 
were recently incorporated into the latest Plug Power coolant 
flow-path design. 

The next step in the analysis process was to determine the 
relative impact on thermal performance for a set of stack design 
parameters.  To do this, we conducted a series of simulations 
using DOE techniques with the design parameters and ranges 
shown in Table 1.  The percentages indicate the extent to which 
the parameters were varied from their nominal setting.  The 
internal heat generation was included as a design parameter to 
show its effect on thermal performance, but was varied less than 
the other parameters since it is not as easily controlled.  Some 
values such as the plate and coolant thermal conductivity 
require a change in materials to achieve the range.  

 
Table 1. Design Parameters and Ranges for Design of 

Experiments 
 

Design Parameter Range Studied 
(+/-) 

Coolant Flow Rate 25% 
Coolant Channel Area 25% 
Coolant Inlet Temperature 25% 
Internal Heat Generation 12.5% 
Plate Thermal Conductivity 25% 
Coolant Thermal Conductivity 25% 
Plate Web Thickness 33% 
MEA Thermal Conductivity 25% 

 

 

A
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Figure 11. Results of sensitivity analysis 
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For the DOE study, a 2-level half-factorial DOE was 
combined with a 3-level Taguchi  L-18 design.  The total 
number of runs for this type of design is: 

nfactorial = level(number of factors – fraction) = 2(8-1) = 128 

ntaguchi= 18 

ntotal = 146 

The maximum MEA temperature (Tmax-MEA), the 
temperature differential across the MEA (dTMEA), and the 
coolant channel pressure drop (dPcoolant) were evaluated as 
system responses.  A sensitivity analysis was performed to 
reveal the relative impacts that each of the design parameters 
has on the system performance.  Results of the sensitivity 
analysis are shown in Figure 11.  The internal heat generation 
(Heat) and the coolant flow rate had the strongest effect on 
MEA temperature difference. Together, these two factors 
accounted for more than 70% of the dTMEA response.  The 
bipolar plate thermal conductivity (k Plate), coolant channel 
area, and the coolant thermal conductivity (k Coolant) together 
accounted for approximately 25% of the dTMEA response.  Aside 
from increasing the coolant flow rate and controlling the heat 
generation, bipolar plate materials with improved thermal 
conductivity, greater coolant channel surface area, and 
improved thermal conductivity were the most effective 
parameters for improving the temperature differential of the 
MEA. The maximum MEA temperature response was 
dominated by the coolant inlet temperature (T inlet), the heat 
generation, and the coolant flow rate.  As expected, coolant 
pressure drop was dominated by coolant channel area, coolant 
inlet temperature, and coolant flow rate.  Note that all the 
effects are based on the parameters selected and the range of 
values chosen for the DOE.  

Finally, a probabilistic analysis was performed to determine 
the effect of variation of input load factors on thermal 
performance of a given design.  The factors chosen for random 
input variables in this analysis included the heat generation rate, 
the inlet coolant temperature, and the coolant flow rate.  
Variation in these parameters is expressed as a normal 
distribution with a specified mean and standard deviation.  Each 
parameter was allowed to vary a total of 5% (+/- 2.5% from the 
nominal design value).  Figure 12 shows the distribution of the 
random input variables. 

The parameters were then varied to develop a response 
surface of the performance parameters that included the 
maximum temperature of the MEA and the temperature 
differential across the MEA.  The response surface was 
generated by running the parametric FEA thermal model with 
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Figure 12. Distribution of random input variables 
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input boundary conditions sampled from the shown 
distributions using a central composite sampling technique.   

For the case of three design parameters, the central 
composite method required 15 simulations to be run (2).  A 
forward step-wise regression model was then used to determine 
the response surface for each of the performance parameters 
(Tmax-MEA and dTMEA).  Once the response surface was generated 
and verified, 10000 samples of the output performance 
parameters were generated. 

Figure 13 shows the correlation between the values 
extracted from the FEA and the values calculated from the 
dTMEA response surface quadratic polynomial.  This figure 
indicates a very good fit for the dTMEA response surface.  A 
“perfect” fit would have a slope of 1.0, y-intercept of 0.0, and 
an R2 value of 1.0.  A similar fit was achieved for Tmax-MEA 
response surface. 

y = 0.9991x + 0.0026
R2 = 0.9991
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Figure 13. Correlation of FEA results and response 
surface 

Figure 14 shows the distribution of Tmax-MEA and dTMEA 
response to 10000 randomly varying values of heat generation, 
coolant pressure drop, and coolant inlet temperature.  The 
dTMEA response to 5% random variation in the input parameters 
was an average of 5.6ºC with a total range (maximum dTMEA- 
minimum dTMEA) of 0.4ºC, which is approximately 7% of the 
average response.   Sensitivity analysis on the dTMEA response 
showed that the response is primarily due to variations in the 
internal heat generation (66%).  The inlet coolant pressure had 
the next greatest effect (18%), while the inlet coolant 
temperature accounted for 16% of the response.  The Tmax-MEA 
response to 5% random variation in the input parameters was an 
average of 187ºC and a total range (maximum Tmax-MEA - 
minimum Tmax-MEA) of 11.2ºC, which is approximately 6% of 
the average response.   Sensitivity analysis on the Tmax-MEA 
response showed that the response is dominated by variations in 
the inlet coolant temperature (96%).   
Copyright © 2006 by ASME



 

Figure 14. Distribution of output performance 
parameters 

 

Figure 15 compares the output response distributions for 
the base coolant channel design and the new coolant channel 
design.  This figure shows a substantially (30%) lower average 
dTMEA for the new channel design (i.e., significantly lower 
temperature differential across the MEA).  However, the new 
channel design showed a 35% increase in the standard deviation 
of dTMEA.   Although the temperature differential for the new 
design was lower, it was more sensitive to input load variations.  
The new channel design also exhibited slightly (0.8%) lower  
Tmax-MEA response, while the distribution of Tmax-MEA for the two 
designs was nearly identical. 
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Figure 15. Comparison of output distributions for base 
and new channel designs 

CONCLUSIONS 

The authors have developed a fuel cell stack thermal 
modeling process that incorporates a 3-D multi-cell stack 
thermal model, real-world geometry, integration with an 
external electrochemical model for predicting nonuniform heat 
generation, and integration with design space exploration and 
probabilistic design techniques.   

The modeling process was demonstrated using Plug 
Power’s high-temperature, PBI-based stack.  Initial results 
showed how classic DOE techniques integrated with the model 
were used to define response surfaces and perform sensitivity 
studies on heat generation rates, fluid flow, bipolar plate 
channel geometry, fluid properties, and plate thermal material 
properties.  The model showed nonuniform temperature 
distributions within the fuel cell stack that may cause degraded 
Copyright © 2006 by ASME



performance, induce thermo-mechanical stresses, and be a 
source of reduced stack durability.  NREL also used the model 
to propose an alternative coolant flow-path design that yields 
improved thermal performance. Elements from this analysis 
were recently incorporated into the latest Plug Power coolant 
flow-path design. 
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