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Agenda

• Introduction to DFSS, Robust Design, PIDO
• Example 1: HEV Battery 
• Example 2: BIW Door assemblyExample 2: BIW Door assembly
• Example 3: Turbine - Integration into Product 

Development
• Workflow
• Recommendations
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Contradicting Design Requirements

The need for innovative tools is apparent now 
more than ever as more complex design 
requirements are surfacing such as:

– Cost
– Performance & safety
– Quality
– Time to market & short life 

cycle
E i t l i t
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– Environmental impacts
– Aesthetics 
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Statistical Design Performance Simulation?
“ You ‘ve got to be passionate lunatics about the quality issue …”

Jack Welch
“U.S. autos fight poor quality reputation …” 

Joe Miller / The Detroit News

“ Product quality requires managerial, technological and 
statistical concepts  throughout all the major functions of the 
organization  …”

Josheph M. Juran

Variation (thickness, properties, surface finish, 
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loads, processes etc.) is … THE ENEMY

DOE, Design for Six Sigma (DFSS), Statistical FEA, 
Behavioral Modeling is …               THE DEFENCE

Design Optimization –DFSS - PIDO
“For the goal is not the last, but the best ”

Aristotle (384-322 BCE)

Design Optimization is the selection of the 
best alternative within the available means

Design Optimization can be addressed with:
Knowledge, Tradition and Experience
Numerical Optimization Methods
Design Space exploration Methods

DFSS is set of tools and methods for Analyzing, Allocating, 
and Optimizing Variability
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PIDO Process Integration & Design Optimization
Processes Automation -> 

Design Exploration -> 
Design Optimization - > 

Robust Design
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Quality - Robust Design
• Variation exists in all systems, subsystems, 

components and processes

• Definition of Robust Design:
Deliver customer expectations at Deliver customer expectations at 
profitable cost regardless of:
– customer usage
– variation in manufacturing 
– variation in supplier 
– variation in distribution, delivery & installation
– degradation over product life
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degradation over product life

• Goals of Robust Design (shrink and shift)
– Shift performance mean to the target value
– Shrink product’s performance variability

Improved Quality and Reduced Total Cost

Failure Failure 
CostsCosts

3σ
4σ

Cost of Defect
or Failure
•Lost Customers CostsCosts

Cost ofCost of
controlcontrol

C
os

t
C

os
t

4σ

6σ
•Liability ( R&D )

•Recalls (production)

•Rework
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Defect LevelDefect Level
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Noise & Control Parameters

• Noise parameters:
Factors that are beyond the control of the designer
– material property variabilityp p y y
– manufacturing process limitations
– Environment: temperature & humidity
– component degradation with time
– ...

• Control Parameters:
Factors that the designer can control
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– geometric design variables
– material selections
– design configurations
– manufacturing process settings
– ...

Tools for Robust Design

• Design Of Experiments
– Exploits nonlinearities and interactions 

between noise & control parameters to 
reduce product performance variabilityp p y

– full factorial, fractional factorial, Monte-
Carlo, LHC

• Response Surface Methods
– Central Composite Design
– Box-Behnken Design

• 6-sigma design
Identifying & qualifying causes of variation
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– Identifying & qualifying causes of variation
– Centering performance on specification 

target
– Achieving Six Sigma level robustness on the 

key product performance characteristics 
with respect to the quantified variation
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Shift and Shrink

Lower 
Specification 
Limit

Upper 
Specification 
Limit
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Design Space -Traditional Solution
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Statistical Design Performance Simulation

Simulation of input 
parameters (material, 

thickness, spot welds, …)   
Statistical analysis of 

output parameters 
(stress, fatigue life, …)

X3X2X1

Z

PDS
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Y

X
Monte Carlo

Response Surface

•Over-design is avoided     
( not “as planned“, “as is” or the 
“worst design”)
•Weight Reduction
•Six sigma quality

Example # 1

Applying Six Sigma Design Process to HEV Battery 
Thermal Management
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HEV Battery Pack

Thermal Well Thermistor in a WellThermal Well Thermistor in a Well

May 2005OPTI 2005

Air Flow Gaps Between ModulesAir Flow Gaps Between Modules

Inputs with Variation

• Gap 
Thickness

• Cell 
ResistanceResistance

• Flow Rate
• Six input 

parameters:
1. μtgap
2. σtgap
3. μR
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μR
4. σR
5. μFrate
6. σFrate
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Outputs / Goals

Outputs – variation
– max temperature
– differential temperature
– pressure drop– pressure drop

Six output parameters:
1. μTmax
2. μdT
3. μdP
4. σTmax
5 σd
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5. σdT
6. σdP

Three Upper Specification 
Limits (USL)

Histogram of Temperature Differential and Sigma Quality Levels

Sigma Quality 
Level
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Design Space with σ Quality Regions Tmax
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Design Space with σ Quality Regions dT
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Design Space with σ Quality Regions dP
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Design Space with σ Quality Regions All
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Example # 2

Effect of thickness and material variation on six-sigma 
performance targets of a door assembly
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Door Sag Displacement Distribution

May 2005OPTI 2005



13

Oil-Canning Deflection Distribution
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Input variables 1-3

• Thicknesses  
of A-pillar 
C tComponents
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Input variables 4-6

Thicknesses  of 
Door Components
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Input variables 7-8

• Thicknesses  of Door 
Hinges

• Modules of elasticityModules of elasticity
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Door Sag Deflection Response Attribute # 1 
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Oil-Canning Deflection Response Attribute # 2  
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Assembly Weight Response Attribute # 3 
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Sensitivity of Design Variables on Door Sag Deflection 
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CAD Geometry FEM Mesh FEM Boundary 
Conditions

CAD FEM Post Integration
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Results for Maximum Principal Stress
Pressure Side Suction Side

T
Axial

Leaning

Design Variables and 
Uncertainties

CAD FEM Post Integration

Peak Value σs

Tang. 
Leaning

Leaning

Fillet Radius

Peak Value σp
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(Lognormal)



18

Enabling Parameterization with Workbench
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DesignXplorer manages  parameters & uncertainties
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Initial Design:
Fatigue Life 
1,637 Cycles

Deterministic Optimization for Fatigue Life
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• Optimize Tilt and Lean; Fatigue Life = 38,118

Deterministic Optimization for Fatigue Life
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Design Variables:
μi σ i

Response Variables:
Sigma quality level

Optimization for Quality with Probabilistic Constraints

Sigma quality level
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Workflow (fully automated in ANSYS PDS & WB)

Latin Hyper-Cube 
Sampling

10K Random 

μi, σi
Design Variables

Establish 
Design 

Variables

DOE

Response

Surface

10K Random 
Experiments

Probabilistic μ  σ

Goodnes
s of fitExperiments

DOE
Central  Composite, 
Box-Behnken, etc

Parametric 
CAE Model
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Probabilistic 
Response 

Targets

μi, σi
Response Variables

σ Quality
Level
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Seven Habits of Highly Effective Design  Process

1. Clarify and document the desired design decision process
2. Create a design environment tailored to the desired 

design process with workflow management
3. Develop a repository of design & manufacturing rules to 

govern the design process
4. Simplify and automate tool usage for standard analyses
5. Automate and simplify data integration (get the right 

data the first time)
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6. Augment the experts by automating large portions of the 
design process (Workbench wizards)  

7. PIDO ( DesignXplorer, Noesis, VisualDOC, iSIGHT, mode 
Frontier,  hyperStudy, model center, RDCS, BMX, …)

Recommendations for DFSS Implementation
• Make the cost of poor quality part of the design    
equation

•Cost   = C Product Development + C Warranty + 

C  C  C C Liability + C Recalls + C Lost Customers +

C Rework + …

• CAE analyses should include a robustness 
assessment for known sources of variation

• Place the power of DFSS in the hands of every 
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p y
designing engineer not just those with advanced 
engineering degrees 

• Automate - Incorporate DFSS into your design 
process 
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Design-for-Six Sigma strategies are transforming 
our methodologies for improving quality 
from inspecting defects to building quality in
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