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Abstract

A design 1s rohust when it is not sensi-
tive to wanations in noise parameters
such as manufacturing tolerances, mate-
rial properties, loading, etc. In recent
years, several robust design concepts
have been introduced to develop opti-
mum designs and to minimize the varia-
tian in the performance characteristics.
In this study, a probabilistic FEA analy-
tis was performed on a door assembly in
arder to identify the effect of thickness
and material property varation on per-
formance targets such as drop-off, sag,
and snap-through buckling. The thick-
ness of the inner and outer panels, the
thickness of the hinges, and the modu-
lus of elasticity were considered as ran-
domly varying parameters with a given
mean and an assumed standard devia-
tion, The performance targets were
determined corresponding te the proba-
bilistic input variables, and sigma quali-
ty regions are determined in the design
space. The methodology for implement-
ing robust design used in this research
effart is summarized in a reusable work-
flow diagram.

Introduction

Most organizations address the gquality
issue by focusing on implementation of
Six Sigma in their management and
manufacturing envirenments. Most of
the manufacturing cost over the life
cycle of a product is determined by its

initial design, therefore quality issues
must be addressed early in the design
cycle with robust design methodologies.

The goal of robust design is to deliver
customer expectations at affordable
cost reaardless of customer usage,
degradation over product life and varia-
tion in manufacturing, suppliers, distri-
bution, delivery and installation. Since
randomness and scatter are a part of
reality everywhere, probabilistic design
technigues are necessary to engineer
quality into designs. Traditional deter-
ministic approaches account for uncer-
tainties through the use of empirical

OPTIMIZING LOOP

FIGURE 1: Workflow for Robusl Optimization
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safety factors. The safety factors are
derived based on past experience |Ref
5]: they do not guarantee satisfactory
performance and do not provide suffi-
cient information to make optimal use
of available resources, frequently result-
ing in overdesign. The probabilistic
design process has not been widely used
because it has been intimidating and
tedious due to its complexity. In recent
years, CAD and FEA codes have intro-
duced integrated design space explo-
ration (PTC's Behavioral Medeling [14]),
and Probabilistic Systems (e.q. ANSYS
PDS [1, 3, 5 and 7]} that make proba-
bilistic analysis easy to setup if the con-
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trol and the noise parameters are identi-
fiable [1]. Control parameters are those
factors which the designer can contrel,
such as geometric design variables,
material selection, design configura-
tians, manufacturing process settings,
etc. [8]. MNoise parameters on the other
hand are factors that affect the design's
functionality and are beyond the control
of the designer or too expensive to con-
trol ‘or change. Examples of noise
parameters are matenal property van-
ability {gauge, yield strength, percent
elongation, etc.), manufacturing process
limitations (part-to-part, run-to-run,
and hegin-end variations) [2], environ-
mental loading, temperatures, humidity,
component degradation with time, etc.
One of the keys to finding optimal and
robust designs s exploring the nature of
the design space. The goal is to identi-
fy the key design parameters that have
the most impact on the product attrib-
utes. This paper describes a design for
a six-sigma technigue that integrates
FEA, probabilistic and robust design
tools within the Camputer Aided Design
{CADY environment. An example of an
SUV door assembly is used and the
effects of material and manufacturing
variations on the assembly's behavior
are identified.

Robust Design Process

The robust design process shown in
Figure 1 has been implemented to eval-
uate the effect of component thickness
and modulus of elasticity on some of the
door assembly attributes. All of the
symhols and processes will be described
in subsequent sections. A sensitivity
analysis of the random inputs on door
assembly attributes is also presented,

In a typical design, we need to mest
several design requirements such as sag,
drop-off, window frame rigidity, door
seal loading, beltline rigidity, flutter,
outer panel oil canning, weight, ete. In
this example, three of these targets were
considered: the sag displacement of the
door latch, the outer panel oil canning
local deflection and the weight target.
The rebust optimization workflow
includes three different processes: the

FIGURE 2: Digplacement Distribution ol the
Ooor Sag Analysis Model

parametric deterministic model (FDM),
the probabilistic design loop, and the
design optimization Loop.

The Parametric Deterministic
FEA Model

The parametric deterministic FEA model
consists of an assembly of twenty body
components that contain the A pillar,
the hinge and the front door assemblies.
The model contains approximately
45000 nodes, 43,000 elements, and
14,000 constraint equations that repre-

FIGURE 3: Displacement Distribution of the
Door $ag Analysis Model

sent the spot welds and bolted connec-
tions,  The model is subject to gravity
loading and the sag displacement of the
door latch and the total weight are com-
puted. Figure 2 shows the displacement
distribution of the door sag analysis
model, A portion of this model that
consists only of the outer door panel is
subjectad to a load normal to the door
panel and panel "oil canning" local
deflection 1s computed. Figure 3 shows
the cuter door panel deflection undet
the second load case.

The A-pillar, hinge and door thicknesses
as well as the modulus of elasticity were

] T 2
2 Thichrean {mm]
BDIE T— v " - -

a3

E':aﬂ!ﬁ*
i

TE A 1
o . Thickness {mm} -

=/

o1 13 43 A4 18

i CERRT) q:a

‘Thicknass (mm|
TR A A E Ak
. Thicknessmm} 0

i " . ! F . .
LR T L T
S Thickness {mm}
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Door Components
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FEATURE

considered parameters. The thicknesses
of the three components, shown in fig-
ure 4, of the A-pillar assemhly were con-
sidered correlated parameters in such a
way that their thickness ratios always

remain the same.  Similarly the three
door components shown in figure 5 were
considered correlated. In other words,
they are assigned the maximum mean
values at the same time. Proprietary
observations and implementation details
are omitted from this paper.

The Probabilistic Design Loop

Al four parameters of the deterministic
model were considered as having varia-
tion. The distributions of the mean
dimensions are approximately mnormal
[2], It was assumed that all three thick-
ness variables exhibit truncated normal
distribution with given mean, standard
deiation, minimum and maximum val-
ues. The mean value of the door panel
thickness Wy the mean value of the
A-pillar thickness piq,, and the mean
value of the hinge thickness Wy, were

considered as control variables. The
mean value of the modulus of elasticity
and all the standard deviations were
considered as noise parameters.  The
standard deviation of each parameter
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FIGURE 6: Probabilily Density Functions {a)
of Hinge Thickness and (b) Elasticity Modulus
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was assumed to be five percent of the
mean wvalue. The maximum and mini-
mum values of each distribution were
assumed to be ten percent of the mean
value,  Typically allowed ranges are
essentially the tolerance of the process
and material input variables[2]. Figure
4 shows the probability densities of the
three A-pillar components with [y, =
1.0 mm, Figure 5 shows the probability
densities of the three door componeants
with Ly = 0.8 mm. Fgure 6a shows
the probability density of the hinge
thickness, Tt was assumed that the
modulus of elasticity variable exhibits
normal distribution with given mean
and standard deviation.  Figure &b
shows the probability density of the
modulus of elasticity for Meoes
205,000 MPa.

For a given set of the mean values of
these input design wvariables and the
assumed distributions one may easily
generate a large set of random numbers
for each wariable.  Several sampling
technigues are available to generate
combination sets of these design wvari-
ables: such as Monte Carle, Latin
Hypercube Sampling (LHS), Central
Compasite, Box-Behnken Matrix, etc. If
the "experiment” is fast and inexpensive
Monte Carlo and LHS sampling tech-
migues work well. In this case the
"experiment” is a structural finite ele-
ment analysis. If the "experiment" is
time consuming and expensive, a8 Box-
Behnken Matrix in combination with the
response surface technigue is preferred.
In this example, the Box-Behnken
Matrix sampling was used in combina-
tion with Forward-stepwise-regression.
The probabilistic design loop is fully
automated and if one views this loop as
a transter function, the mean values of
the four design variables can be caonsid-
ered as fl‘llJIJE-. '::I-Lt.'ﬁl-.ar- Hidopr I‘lminge arld
.“-Ij-_;t-;au:ﬁII and the mean {MsagJ .u'ﬂiL_cnnning-
Wyl and standard deviation (o,
Gl cirriig oy of the attributes {the sag
displacement of the door latch, the
outer panel oil canning local deflection
and the weight target) can be consid-
ered as outputs. Figure 1 shows a
graphical representation of the data
flow for this loop.

Figure 7 shows the histogram of the
door sag deflection of the optimized
case carresponding to input values in
Figures 4-6. Vertical lines. correspon-
ding to the mean value and the various
sigma. levels [1-8} of the door sag
deflection are shown in this figure. One
may ohserve that in this case the upper
specification limit (USL) is farther away
from the six sigma range indicating that
this design, practically speaking, will
always satisfy the upper specification
limit. Figure 8 shows the histogram of
the oil canning deflection and the upper
specification limit, A similar conclusion
can be made since the upper specifica-
tion limits is farther away from the six-
sigma range. Figure 9 shows the his-
togram of the weight distribution carre-
spending to input wvalues Fgures 4-6.
In this case the upper specification
limit is close to the six-sigma level,

an alternative way to quantify the qual-
ity of the design is to determine the
sigma level by solving for "n;" in the fol-

lowing equations.

Equation 1
wosag - mdsag * oo dsag = dSaglarget

Equation 2
ptdoor - n tdoor * o tdoor = 85agTargel

Equation 3
ptpillar - n tpillar * o tpillar = 8Saglarget

Figure 10 shows the sigma quality levels
Mggage Midoore Mepitiar VEFSUS the mean value
of the doaor panel thickness py... Fach

one of the three curves corresponds to a
specific performance target.  To meet
the weight target with six-sigma quality
level the mtdoor must be less than 0.8
mm and in order to meet the oil-canning
Largel willl siz=sigma guality level the
Wedoor Must be greater than 0.73 mm.
(ne may observe form this figure that to
achieve a six-sigma quality level the
mtdoor must be between 0.73 and 0.8
mim.

If the desired sigma level of guality is
achieved the first time, the designer can
stop at this point. Tf the desived sigma
level of quality is not achieved the
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designer needs to adjust the inputs of
the probabilistic design loop (W
Moo Meninge @N0 Mesreer) and rerun his
analysis. This adjustment can be auto-
mated with a design optimization loop

The Design Optimization Loop

The three main control varables used as
inputs of the probabilistic design loop
are mean values of the three design vari-
ables IzJ-'I'Ipni,'l..elrr Heiaar: “thinge}' The three
main eutputs of that loop are the sigma
quality levels of each one of the three
targets. The designer's goal is to select
the appropriate sets of values for the
design variables (Mg Midosr: Wninge)
that maximizes the minimum value of

the three sigma quality levels. The opti-
mization setup in mathematical form is:

Find the values of Wi Bedoor Mininge that
Maximize the min [Msaar Meoar Dipilar]
whera:

0.70 mm = Hipillar < 2.00mm

o mm = Mdoer < 2.00mm

g0 mm < Mihiege = 2.00mm

This task has been fully automated with
the design optimization loop [11].
Since each "experiment” of this loop is
computationally expensive, the D-opti-
mal sampling technigue was selected to
select the initial set of trials, The
Sequential Unconstrained minimization

FIGURE 10: Sigma Quality Levels versus Door Panel Thickness

technique was selected as the oplimiza-
ticn method, Figure 1 shows the work-
flow for the optimization loop. If the
geometny is very challenging, the design
optimization loop can be automated
using PTC's Behavioral Modeling.  The
Behavioral Modeling Extension of
Pro/Engineer is an additional module
that has the capability of generating
analysis and optimization study fea-
tures.  The external analysis feature
sends certain information to an external
program, executes it, retrieves some pre-
defined results from the output informa-
tion and generates Pro/Engineer param-
eters, These parameters can be opti-
mized using the optimization feature
[13].



Sensitivity Analysis

Figures 11-13 show the sensitivity of the
variols design wvariables corresponding
to the design requirements of Door Sag.
Oil Canning, and Weight, respectively.
The results are summarized in Table 1.

For Door Sag, the door panel thickness
has the smallest contribution {i.e. 6%).
This contribution is small because
though a higher thickness does increase
the stiffness of the door panel, it -also
increases the gravity loading {weight).
The hinge thickness contribution is
19.3%, the A-pillar thickness con-
tributes 26%, and the Modulus of
Elasticity contributes 48.7%. The range
thal these variables are allowed to fluc-
tuate in influences the contribution of
each design variable.

Figure 12 shows the sensitivity of the
design wariables corresponding to oil
canning deflection.  As expected, only
the outer door panel thickness and the
Modulus of Elasticity have an effect,
The #Modulus of Elasticity contributes
62% and the outer door panel con-
tributes 38% to the oil canning deflac-
tion.

Figure 13 shows the sensitivity of the
design wvariables corresponding to the

Figure 1
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TABLE 1; Summary of Sensilivily Results

welght requirement. The hinge thickness
contribution is 6%, the A-pillar contri-
bution iz 30%, and the door thickness
contribution is 64% as expected, since
the surface area of the door is much
Larger than that of the A-pillar and the
hinges.

Conclusions

# The example presented demonstrates
that with probabibistic design and apti-
mization integration, engineers are able
to develop designs that better meet per-
formance abjectives and are less sensi-
tive to manufacturing variations,

¢ The methodology for implementing
robust design wused in this research
effort is presented in a practical,
reusable worlkflow diagram with the pro-
posed DOE and response surface algo-
rithms.

Figure 2
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FIGURE 11: Sensitivily ol Design Yariables on Door Sag Dellection
FIGURE 12: Sensitivily of Design Yariables on Qil-Canning Deflection
FIGURE 13: Sensitivily ol Design Yariables on Azsembly Weight Deflection
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» Modern CAD and FEA software tools
that have incorporated probabilistic
design allow distributed computing that
enables the implementation of this com-
puter intensive technology,
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