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0BCPDA: Collaborative Product Development Associates, LLC 
CPDA’s Product Lifecycle Management (PLM) research programs target the critical decisions in 
Product Lifecycle Management challenging Design, Engineering, Manufacturing, and Information 
Technology managers and executives. CPDA’s PLM collaborative research programs provide in-
depth analysis of strategies, products, issues, processes, technologies, trends, case studies, and 
surveys for assessing technology, business goals and objectives, and implementation road maps. 

The cohesive suite of collaborative programs clarifies and evaluates new capabilities, 
standards for frameworks, and development issues; it highlights the most advanced uses of 
leading technologies, and it links the technical effort to the realization of business value. The 
four collaborative research programs include: 

Design Creation and Validation: A bottom-up view of engineering requirements from the 
desktop across the enterprise. Advanced computer-aided design (CAD), engineering analysis, 
manufacturing technologies, collaboration, and visualization software serve as springboards for 
gaining a competitive advantage. The Design Creation and Validation service applies CPDA’s 
structured methodology to the evaluation of new products and processes as well as to current 
projects in client organizations. A critical focus, the emerging technology of knowledge 
engineering with templates and rule-based architectures focuses on delivering the needed tools 
into the hands of product developers to capture knowledge, and to formalize its use. The use of 
direct geometry access and manipulation, data translation technology, XML alternatives, and JT 
options are also assessed for their ability to deliver interoperability across the diverse and 
disparate business and technical applications. 

Design/Simulation Council: The Council promotes a standard framework employing common 
terminology to integrate and optimize the diverse and divergent specialist activities currently 
fragmenting design efforts. CAE must fully integrate with design, up front, to close the chasm 
between design and analysis. Analysts must actively participate continuously in design decisions 
and enter the mainstream. The impending breakthrough in CAE will rest on knowledge reuse, 
process capture, and streamlining. 

PLM Integration / Product Definition: A top-down view provides a conceptual framework for 
collaboration across different product development perspectives, bridging customer needs, 
systems engineering and tradeoffs, design solutions, and fulfillment and manufacturing. 
Integration and interoperability in complex PLM environments pose substantial hurdles. The rapid 
transition to cross-enterprise collaboration, at all levels of design and supply, intensifies the 
pressure on existing, inwardly focused IT architectures to support and enable new modes of 
doing business. 

Product Value Management: Common processes for design, development, and product 
introduction across the supply chain may be validated with reference models such as SCOR 
(Supply Chain Operational Reference model), or VCOR (Value Chain Operational Reference 
model). The first step, business process modeling (BPM), facilitates the building of consensus 
around a common understanding and terminology, across organizations and functional silos. 
Mapping BPM to a service-oriented architecture based on open standards represents a critical 
second step. An IT integration infrastructure in a Federated Enterprise Reference Architecture™ 
(FERA) supports a loose coupling between enterprises extending across the supply chain.  

Collaborative Product Development Associates was formed by the PLM research team of D.H. 
Brown Associates, Inc. (DHBA). 
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Dr. Andreas Vlahinos has been instrumental in rapid product development through the 
implementation of Design for Six Sigma (DFSS) and Computer-Aided Concurrent 
Engineering for several government agencies, including NASA and DOE, and for industry 
partners such as Alcoa, Allison Engine Company, Ford Motor, General Dynamics, IBM, 
Lockheed Martin, Mechanical Dynamics, PTC, Solar Turbines, and Toyota, among 
others. 

Dr. Vlahinos teaches Structural Mechanics and Computer-Aided Structural Engineering at the 
University of Colorado, and has received the Professor of the Year Award several times. He has 
authored over 100 publications covering structural stability, structural dynamics, and design 
optimization, and has received R&D Magazine’s R&D 100 award. Dr. Vlahinos received his 
Ph.D. in Engineering Science and Mechanics from the Georgia Institute of Technology. 

This report is derived from Dr. Vlahinos’ presentation at Collaborative Product 
Development Associates’ annual conference, PLM Road MapTM. 

EXECUTIVE SUMMARY 
Design for Six Sigma (DFSS) strategies are transforming our methodologies for 
improving quality from inspecting defects after-the-fact to building quality into a 
product from the beginning of its design. The approach considers the statistical 
contribution of the design parameters to the critical requirements. The effects of 
variation can be identified, understood, and forecast during the design cycle. 
Adoption of the DFSS process mitigates the risks and costs of poor quality.  

How can DFSS be implemented? In general, by making the cost of poor quality 
part of the design equation, including the warranty, liability, recall, lost customer, 
and rework costs. The cost of the product must include all of the quality issues, in 
addition to direct development costs. Optimize for total cost, including quality, 
up front early in the design. In terms of specific steps, seven prerequisites should 
be fulfilled to support process integration and design optimization, as summarized 
in Table 1 on the following page.  

Most critically, the CAE analyses should include a robust assessment of known 
sources of variation. The sigma quality level must be calculated given the target 
performance and variation. Place the power of DFSS in the hands of every design 
engineer, not just those with advanced degrees. And finally, automate DFFS into 

A summary of this report is available to all of our subscribers. Sponsors of our Design/Simulation Council receive 
the full report as part of our comprehensive services. Those interested in the program should contact 
cust_service@cpd-associates.com. 
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your design process. Mainstream software products greatly facilitate a DFSS 
implementation. 

Table 1: Prerequisites for a Highly Effective Design Process 

1. Clarify and document the desired design decision process. 

2. Create a design environment tailored to the desired design process and workflow 
management. 

3. Develop a repository of design and manufacturing rules to govern the design process. 

4. Simplify and automate tool usage for standard analyses.  

5. Automate and simplify data integration, to make the right data available on the first 
attempt to access the information.  

6. Augment the experts by automating large portions of the design process with 
approaches such as workbench wizards. 

7. Take full advantage of the new class of PIDO tools including DesignXplorer (ANSYS), 
Universal Engineering Model [UEM] (CoMeT Solutions), OPTIMUS (Noesis/LMS), 
VisualDOC (Vanderplaats Research & Development), iSIGHT (Engineous), 
modelFRONTIER (ESTECO, in Italy), HyperStudy (Altair), Model Center (Phoenix 
Integration), KollabNet (KollabNet Corporation), Tool Integration Environment [TIE] 
(Technosoft), Enductive (Enductive Solutions), and BMX [Behavioral Modeling 
Extension] (PTC). 

 
This paper summarizes current modeling processes and tradeoffs to automatically 
create optimum robust designs, including three examples of probabilistic design 
and optimization. It covers reusable workflow processes, as well as the challenges 
and rewards for successful DFSS implementations. 
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Time to Quality 
INTRODUCTION TO DFSS, ROBUST DESIGN, AND PIDO 

Successful organizations realize that probabilistic design techniques have enormous 
positive impact on time-to-quality. Time-to-market often becomes irrelevant 
when the total costs of poor quality factor into the analysis. Liability costs for 
some products even exceed the development budget. Consider as well the rework 
costs on recalls, warranty payments, and lost customers from a negative brand 
image. Too often, companies simply make mistakes, or overreact and build in 
superfluous safety factors.  

Design must directly consider the noise factors of variation, recognizing that not 
all bad outcomes happen at the same time. Variation in manufacturing must be 
measured, as well as factored into design tradeoffs. Applying direct statistical 
techniques derived from Six Sigma, companies may compare the mean and the 
standard deviation for any outcome with the targeted performance. Then an 
assessment of the quality level must consider the costs incurred as well. With this 
approach, design can rationally achieve the targeted level of cost.  

Time-to-market is not good enough. 

Design for Six Sigma (DFSS) methodology considers the statistical contribution 
of the design parameters to the critical requirements. The effects of variation can 
be identified, understood, and forecast during the design cycle. Adoption of the 
DFSS process mitigates the risks and costs of poor quality. DFSS, robust design, 
and a new class of tools fall under the umbrella of PIDO – Process Integration 
and Design Optimization. As illustrated in the consideration of three actual 

design problems, to deal effectively with variation, the 
workflow is very similar across most designs. Moreover, 
today that workflow may be effectively integrated in the 
product development process.   

Regardless of the industry, we all face the same challenges, which may begin with 
contradictory design requirements. As more complex design requirements surface 
involving issues such as cost, performance and safety, quality, time-to-market, 
environmental impact, and aesthetics, the need for innovative tools becomes ever 
more apparent and urgent. 

Many organizations emphasize quality and reputation. For the automotive 
sector out of Detroit, in particular, the perception of poor quality drives the 
need to fight to overcome the reputation. Product quality in turn involves 
managerial, technological, and statistical capabilities across all the major 
functions of an organization.  

What degrades quality, what is its enemy? The enemy is variation, which comes 
from such factors as thickness, loads, material properties, and surface finish. Of 
several dozen different approaches for dealing with variation, one of the most 
practical includes the design of experiments. A second, Design for Six Sigma, 
involves a set of tools for analyzing, allocating, and optimizing variability. The 
statistics from finite element analysis (FEA) provide valuable input for the 
analysis as well.  
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PROCESS INTEGRATION AND DESIGN OPTIMIZATION 
(PIDO) 

How do we do all of these things today? The best approach relies on PIDO tools 
that follow four major steps:  
1. Process Automation 
2. Design Exploration 
3. Design Optimization 
4. Robust Design 

PROCESS AUTOMATION 
The first step, process automation, ensures that the task and events in simulation 
flow automatically. It is necessary to automate one run or one simulation 
completely. For example, with a car, the solver must have the ability to change the 
parameters. There should be a human interface that can direct the solver to run a 
few results by pointing the mouse, obtaining the result and target, and automatically 
designating the result as a design or a response variable. But, note that for some 
older PIDO tools an XML team is needed to help build the particular XML link 
to the PIDO model. Moreover, with those tools that same team may have to 
return later towards the end of any project to rebuild the links as some of the 
tools have not fully matured to deal fully and effectively with changes.  

DESIGN EXPLORATION 
With the process defined, design exploration, the second step, then addresses the 
need to run combinations of parameters and different ranges of values, as well as 
perform Design of Experiments. The ability to quickly and effortlessly solve for 
variations in parameters supports the exploration needed to identify the best 
solution and allows users to perform quick and accurate what-if scenarios to test 
design ideas. Just by dragging a mouse, the software can display the number of 
screening variables that are changing, which is particularly useful with a large 
design space involving many variables, and makes it easy to understand how 
design variation can affect system performance.  

DESIGN OPTIMIZATION 
Design optimization, the third step, has been around for years; it is the selection 
of the best alternative available within the acceptable range of performance 
variables. How do we address this design optimization today? Knowledge, 
tradition, and experience govern the design choices. The optimization typically 
sets those design parameters right up to the limits of a constraint. But finding the 
best solution is not necessarily good enough. If you push the design a little bit 
past the constraint, problems may occur. In a perfect world, this would be the 
optimum. In the real world, which includes variation, half of the products could 
easily fall on the other side of the constraint. Half of your products would be 
recalled. Why do we need to deal with the variability? Because variation exists in 
all systems, sub-systems, and components. 
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ROBUST DESIGN 
This leads to step four: robust design. Robust design delivers customer 
expectations at acceptable cost and profitable levels regardless of: 
 customer usage;  
 variation in manufacturing ; 
 variation in suppliers; 
 variation in distribution, delivery, and installation; 
 degradation over product life. 

Customer usage cannot be dictated. Ideally, drivers should avoid potholes, but 
they will inevitably go through them. The same is true for variation in 
manufacturing. You cannot ask a customer to just bear with you if you change 
manufacturers and the material is now a bit weaker. The customer cannot be 
expected to keep buying the products.  

We understand the presence of variations. So what do we do as designers? Shift 
the performance mean for the target value, and shrink the product’s 
performance variability.  

The cost of the product is more realistic if we include the cost of poor quality, 
defects, lost customers, or liability claims. When budgeting, the costs of buying 
new software or new training tools, or of hiring a consultant, must also be 
included. Determine if that budget is sufficient by trying to determine internally 
the cost of poor quality. Failure costs increase with the defect level. With more 
control on quality, total cost drops, as illustrated below in Figure 1. 

FIGURE 1 
Improved Quality and 
Reduced Total Cost 
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• Lost Customers
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• Recalls (production)
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How do we control quality? There are two classes of parameters involving both 
noise and control. Noise parameters represent factors that are beyond the control 
of the designer. For example, there is nothing a designer can do about the 
variability of material properties. There are also manufacturing process limitations, 
such as those related to accuracy and tolerance with ejection molding, for example. 
Environmental variables such as temperature and humidity levels may also be 
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classified as noise parameters. For example, a hybrid car battery gets hot. Does that 
mean you do not sell this car in Palm Springs? Or vice versa, would you not sell it 
in Buffalo, New York because the fuel cell freezes in the wintertime?  

The control parameters for the designer include geometric design variables 
(width, thickness), material selection (aluminum-steel), design configuration (flat, 
corrugated, or ribbed panel), manufacturing process settings, as well as several 
other factors.  

What tools are available to account for variability? As shown on Table 2 below, there 
is the design of experiments, the response surface method, and six sigma design. 

Table 2: Tools for Robust Design 

Design of Experiments 

Exploits nonlinearities and interactions between noise and control 
parameters to reduce the variability of product performance 

Full factorial, fractional factorial, Monte-Carlo, LHC 

Response Surface Methods 

Central Composite Design 

Box-Bhenken Design 

Six-Sigma Design 

Identifying and qualifying causes of variation 

Centering performance on specification targets 

Achieving Six Sigma-level robustness on the key product performance 
characteristics with respect to the quantified variation 

 
Shift-and-shrink comes into play here. Referring to Figure 2 on the following 
page, there is a lower and an upper limit in our attributes. The mission is to shift 
the distribution from the left out to the middle, and then shrink or squeeze the 
distribution so it will fit between the upper and lower bounds of the specification 
to meet the targets.  
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Lower 
Specification 
Limit

Upper 
Specification 
Limit

 

FIGURE 2 
Shift and Shrink 

How is this done in a simulation? By using a mean value and a standard deviation, 
instead of giving a single-point estimate as the targeted numerical value. Using a 
sampling technique, a pair of random variables is run in the simulation. This is 
then repeated with other pairs until there may be results from a thousand random 
runs. There will then be a thousand random outputs that define the mean and 
standard deviation. 

Over-design is avoided
• not “as planned,“ “as is,” or the “worst design”
Weight Reduction
Six Sigma Quality

Simulation of Input Parameters 
(e.g., material, thickness, spot welds)

Statistical Analysis of Output  Parameters 
(e.g., stress, fatigue life)

PDS

Response Surface
Monte Carlo

FIGURE 3 
Key Performance 
Parameters: 
Statistical Design 
Performance 
Simulation 

 
As illustrated in Figure 3 above, three variables such as material, thickness, and 
spot welds may be considered. In this case, the variation of the key performance 
parameters follows various distributions. For example the material variation 
follows a Weibull distribution, the thickness follows a normal distribution, and 
the loads follow a log-normal distribution. With spot welds, the distribution can 
be uniform, as any can fail with equal probability.  

Once the information on both the mean and standard deviation is available with 
the distribution of the critical performance variables, combinations of variables 
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can be assessed with a smart Monte Carlo approach to assemble the data for 
simulation. Hundreds or even thousands of runs might be completed to support 
the statistical analysis of output parameters.  

To illustrate how DFSS applies in design, three examples will be considered –
thermal management for a battery, design of an SUV door, and gasket 
configurations for fuel cells. 
 

1. APPLYING SIX SIGMA DESIGN TO BATTERY THERMAL 
MANAGEMENT 

The first example involves a hybrid electric vehicle battery, which has evolved 
with many design improvements over time. The battery cell is, practically 
speaking, handmade. It has layers of copper and aluminum that are put in a cavity 
and filled with electrolytes. However, there is a great deal of variation involved, 
particularly in the thickness of the gaps between the layers, which leads to 
significant variation in the overall electrical resistance.  

Most companies cannot afford to design for the worst case of uncertainty for all 
variables. That leads to an over-designed configuration. The limits must be 
analyzed and defined statistically. Variation must be assessed in the design for the 
mean and deviation of gap thickness, cell resistance, and flow rates, as 
summarized in the figure below. 

Inputs with Variation

• Gap Thickness
• Cell Resistance
• Flow Rate
• Six input 

parameters:
1. μtgap
2. σtgap
3. μR
4. σR
5. μFrate
6. σFrate

 

FIGURE 4 
Applying Six Sigma 
to Battery Thermal 
Management 

To statistically analyze the variation, a good modeling tool is required. In this 
case, the tool processed the inputs to estimate the target outputs for three 
variables: the maximum temperature, the differential temperature, and the 
pressure drop, as summarized in Figure 5 below.  
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Outputs / Goals

Outputs with variation
– max temperature
– differential temperature
– pressure drop

Six output parameters:
1. μTmax

2. μdT

3. μdP

4. σTmax

5. σdT

6. σdP

Three Upper Specification 
Limits (USL)

 

FIGURE 5 
Statistical Analysis of 
Variation  
 

The supplier cares about the temperature because the life of the battery correlates 
with the maximum temperature, the differential temperature within the cell, and the 
level of pressure of pressure drop of the cooling system. Empirical data indicates 
how long the battery will last. If that battery were to fail before the end of the 
guarantee period, the company pays for the battery. It becomes critical to make 
sure the battery lasts, supported by a well informed financial business decision. 
Do I release this product before I know how many will fail the warranty?  

One approach popular in the automotive sector is the sigma quality level, which 
measures the distance between the mean value and the specification limit in terms 
of the standard deviation. Today this is measurement is fully automated within the 
ANSYS/Workbench environment.  

To assess failure rates for the battery statistically, the tradeoffs covering the 
maximum temperature, the differential temperature, and the pressure drop must 
be considered together. Very little can be done about the variation of standard 
deviation, but the mean values can be shifted. Figure 6 (on the following page) 
summarizes data for the maximum temperature given the mean value of the air 
flow and the mean value of the gap between cells, while Figure 7 presents the data 
on differential temperature for the same design space. In both cases, the area to 
the top left in brown represents six sigma results, while the red designates five 
sigma, yellow, four sigma, and so on. Figure 8 considers the level of pressure drop 
given the air flow and the gap, however, which presents very different tradeoffs. 
Optimizing for all three variables, which are in conflict, the best that can be 
accomplished is sigma two quality, as summarized in Figure 9. Minimizing the 
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impact of one variable such as temperature would boost the variance of the other. 
The tradeoffs for all three must be considered together. 

The result implied too many failures per million would occur. The executive decision 
was made at that time not to release the battery. The vehicle was released slightly 
late as a result, but another iteration of the battery design was able to cool itself. 

 

 

Design Space with σ Quality Regions Tmax 
 FIGURE 6 

Temperature  
 

 
 

 

 
Design Space with σ Quality Regions for δT 

FIGURE 7 
Temperature 
Differential  
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Some companies compute the sigma quality level based on empirical data after 
the fact, from actual results such as a recall or physical tests. Unfortunately, the 
design mistakes that do not account for variation in environment may only be 
discovered after the fact when it is too late. Even with physical tests, the 

Design Space with σ Quality Regions for All Criteria 

 

 

Design Space with σ Quality Regions for Pressure Drop 

FIGURE 8 
Pressure 
Differential  

FIGURE 9 
Design Tradeoffs 
across All Three 
Parameters 
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prototypes or early production may be thrown out as scrap when they don’t meet 
criteria. Designing up front to account for variation with analytical models 
involving FEA may determine the sigma quality level and calculate the full effects 
of variation. By calculating the deviation of the mean in terms of the standard 
deviation, the results convert statistically to dollars, since it is known how many 
will fail. Quality cost tradeoffs may be explicitly identified.  

Considering the example of the battery cell with sigma quality level 2, the only 
industry that has more than 6 sigma is North American Airlines, which is 6.2 sigma 
on fatalities. A company with 3 sigma in the airlines sector would incur six flights 
crashing a day, clearly catastrophic. In the airline industry, 99% is not good enough.  

But in the power industry, 99.9% power uptime means forty-five minutes a 
month there is no power, which may be considered acceptable. Some products 
can be tolerated with less than six sigma. The North American auto industry 
quality level is around four sigma level across in most categories. 
  

2. SIX SIGMA PERFORMANCE TARGETS FOR A DOOR 
ASSEMBLY  

The next example involves the design of an SUV door to meets specifications and 
performance criteria. The focus here is on the door sag and snap-through 
buckling. The door should not sag too much; it should not have to be lifted in 
order to close it. Door sag may still be seen in older cars, but today that is not 
acceptable. What is more, no one wants to get dents from door impact when they 
park. To deal with the challenge, the effect of thickness and material variation on 
six sigma performance targets must be analyzed for the door assembly, as 
illustrated in Figure 10. 

   

FIGURE 10 
Door Assembly: 
Door Sag Displacement 
Distribution 
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The American Institute of Steel Construction provides guidelines that help in 
assessing the variation on blanks during manufacturing. A part is put on a blank, 
and then a press squeezes it down. With use, the press warms up and oil drips 
onto it, causing any parts manufactured at the end of the day, when the press is 
warm, to have a different thickness from those manufactured in the morning. 
Furthermore, using the same equipment, the difference becomes even greater 
after a month. 

There are many variables to consider in a car door, such as the thickness of the 
door, and the hinges. In this example, which is from personal experience, I did 
not understand why the hinges should be considered in the analysis of thickness 
and material variation, as they are the smallest piece. Take all the inputs – the 
thickness of the A-pillar components, the thickness of the door components, the 
thickness of the door hinges, and the modulus of elasticity. Calculate the mean and 
standard deviation of the door sag relative to the maximum sag specification. The 
process is the same for each of the targets. The result summarizes the sensitivity 
of the door sag to each of the design variables, illustrated in the figure below. 
  

Modulus of Elasticity A-Pillar Thickness Hinge Thickness Door Thickness
 

FIGURE 11 
Sensitivity to Design 
Variables on Door Sag 
Deflection  
 

The beauty of the approach relates to the ability to run the analysis quickly, and a 
sensitivity analysis is also provided. This analysis identifies the most important 
variables, so we know where we need to focus next time. The door thickness was 
originally thought to be the most important variable. But as shown in the figure 
above, the hinges and the A-pillar components contributed the most to door sag. 
The next time, it will not be necessary to even bother considering door thickness.  

As an aside, an important point to keep in mind relates to the realities of decision 
making across disciplines in any organization. Each department wants to make 
the decisions, to be the “king.” In the auto industry, packaging and cost are 
“kings” If it cannot be fit, nor be produced at a reasonable cost, it does not 
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matter if you are the most brilliant engineer in design. Brilliance in engineering 
does not count if the cost and packaging do not work.  
 

3. FUEL CELL GASKET CONFIGURATIONS  
The last example involves fuel cell gasket configurations of cooler and cell 
interfaces to support robust sealing. In typical PEM (proton exchange membrane) 
fuel cells, a compressed gasket provides a sealing barrier between the cell and 
cooler bipolar plate interfaces. The gasket initially bears the entire bolt load and 
its resisting reaction load depends on the cross-sectional shape of the gasket, the 
bipolar plate’s groove depth, and the hyper-elastic properties of the gasket 
material. Each fuel cell has approximately 200 plates with several gaskets. In an 
effort to obtain optimum robust design that is not sensitive to variations in noise 
parameters, such as manufacturing tolerances, material properties, process 
capability, or tooling wear, a probabilistic FEA analysis was performed.  

This particular company desired a high sigma quality level for the fuel cells that 
would potentially be used in both stationary and mobile applications. They also 
insisted that the tolerances in manufacturing be controlled as much as possible, 
and we would have to live with that variation. That meant changing the design, 
and we put in two thick sections on the gaskets, as shown in the figure below.  

FIGURE 12 
Fuel Cell Gasket 
Variation 

Range of Minimum and Maximum Shape Variation

 
 
With an assessment of robustness, the first – and hardest – task is to assess the 
variation. The original deterministic shape is shown on Figure 12 showing the 
minimum and maximum shape variation. The assessment of robustness then 
randomly varied four key parameters:  

1. The gasket profile 
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2. The gasket groove depth 

3. The recessed opposing plate’s pocket groove depth 

4. The interface gap 

The response surface of the contact force per unit length of the gasket was 
determined in terms of the probabilistic input variables. The sensitivity of each of 
the input variables on the contact force was found. The probability density 
function of the contact force was determined and compared to the various upper 
and lower specification limits of cell and cooler interfaces. The sigma quality level 
for each target is determined and the methodology for implementing robust 
design used in this research effort is summarized in a reusable workflow diagram 
shown in Figure 13. 
 

Workflow – Fully Automated in ANSYS PDS & WB

Latin Hyper-Cube 
Sampling

Response

Surface

10K Random 
Experiments

Probabilistic 
Response

Targets
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Design Variables
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σ Quality
Level

Quality of 
fit

Establish 
Design 

Variables

Experiments

DOE
Central  Composite, 
Box-Behnken, etc.

Parametric 
CAE Model

 

FIGURE 13 
Workflow Automation 
 

 

WORKFLOW AUTOMATION 
Although three examples of the battery, car door, and fuel cell involve very 
different design challenges, the workflow is similar for all three. First, you need to 
identify the design variables. Then in sampling, is it necessary to perform 10,000 
runs to be realistic? Not at all. Indeed, an analysis that follows the principles of 
the design of experiments provides a mathematical framework for changing the 
key parameter simultaneously to evaluate variation with a relatively limited 
number of runs. With a CAE-automated project, running multiple analyses 
provides the outputs to determine the quality of the fit. If the fit is not good, run 
more experiments. When the fit is good, assess the probabilistic design variables, 
find the mean and standard deviation of the probabilistic response, compare the 
target, and find the quality level.  
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The approach may seem like a lot of work, but it can now be fully automated. A 
workflow of the process is depicted in Figure 13 above, using ANSYS PDS 
(Probabilistic Design Systems) and Workbench. The mean and standard deviation 
of the design parameters represent the input, and the sigma quality level is the 
output. Feed the mean and standard deviation of your design variables into the 
workflow and you get to the sigma level. Then optimize for the sigma level. A 
high level of integration now automates a process once completed manually. If 
you have a higher level optimizer covering this problem, it is called a 
DesignXplorer. Today, the workflow can be executed in a single day because of 
the tools available.  
  

 
 

Design for Six Sigma strategies are transforming our methodologies for 
improving quality from inspecting defects to building quality in. 
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