Fast Discovery of the Best Designs

by
Andreas Vlahinos, Ph.D.

Principal,

Advanced Engineering Solutions, LLC 4547 N. Lariat Dr., Castle Rock, CO 80104

Phone: 303-814-0455; email: andreas@aes.nu

www.aes.nu

Learning Outcomes

- Understand the basics of designed experiments and robust design
- Enable designs to be driven by their product specifications
- Know how to use simple graphical techniques to analyze multi-objective study data
- Perform automated design space exploration
- Optimize automatically the design for a set of performance attributes
- Design for Six-sigma quality levels

Application Activity # 1

Identification of the most influential Pro/E parameters (DOE)

Application activity #1: Identification of the most influential Pro/E parameters

Problem Statement:
 Using 2 level 3 factor design of experiments determine the Pro/E
 parameters W, H, t that are the most influential on the performance attribute (Ixx/A) for the aluminum extruded section shown.

where:

80 < W < 120 160 < H < 240 4 < † < 6

Learning Goals:

 Understanding the fundamentals of Designs Of Experiments

Design Exploration for Full Factorial, 2 level - 3 factor design

Multi-Objective Design Study - Full Factorial

Response Table for Three-factor Experiment

E	Experiment Number	Response Value	W (Width)		H (Height)		t (thickness)	
			min 80	max 120	min 160	max 240	min 4	max 6
	1	R1	R1		R1		R1	
	2	R2	R2		R2			R2
	3	R3	R3			R3	R3	
	4	R4	R4			R4		R4
	5	R5		R5	R5		R5	
	6	R6		R6	R6			R6
	7	R7		R7		R7	R7	
	8	R8		R8		R8		R8
A	VERAGE	R	W1	W2	H1	H2	t1	t2
	EFFECT		W2-W1		H2-H1		t2-t1	

Response Table for Three-factor Experiment

Experiment	Response Value	W (Width)		H (Height)		t (thickness)		
Number		min 80	max 120	min 160	max 240	min 4	max 6	
1	2558	2558		2558		2558		
2	2527	2527		2527			2527	
3	5598	5598			5598	5598		
4	5555	5555			5555		5555	
5	2636		2636	2636		2636		
6	2700		2700	2700			2700	
7	5976		5976		5976	5976		
8	5927		5927		5927		5927	
AVERAGE	4184.6	4059.5	4309.8	2605.3	5764.0	4192.0	4177.3	
EFFECT		250.25		3158.75		-14.75		
1	1		,			1		

Graphical Representation of Main Effects

Automatic Design Exploration

Scatter Plot for two of Design Variables

Scatter Plot of Ixx versus Area

Application activity # 2

Minimum Cost Container

Application activity # 6 Minimum Cost Container

Problem Statement:

Consider the open top circular storage bin container shown. Choose the height h, the width d, and the slope θ such that the bin holds a prescribed volume V = 10 m³ and it is of a minimum cost. The cost of the base per unit area is C1=1.00 \$/m² and the cost of the side per unit area is C2 =1.50 \$/m²

BMX Learning Goals:

- Create an optimization study that holds a prescribed value constant and minimizes a cost function.

Volume, Area and Cost Analyses Features

- Insert a model analysis feature to compute the volume
- Insert a measure analysis feature to compute the base area
- Insert a measure analysis feature to compute the side area
- Insert a Relation Analysis Feature to compute the cost:

cost=

1.00*AREA:FID_BASE_AREA+

1.5*AREA:FID_SIDE_AREA

Optimization of storage container

- · Goal:
 - Minimize cost
- Constraints:
 - Volume = 10
- Design Variables:
 - 0.5 < RADIUS < 3
 - 0.5, HEIGHT < 3
 - 10 < ANGLE < 90
- Optimum Solution:
 - RADIUS = 1.63
 - HEIGHT = 0.50
 - ANGLE = 53.35

NISCOV

Application activity # 3 Cell Phone speaker - Spacing Sensitivity

Spacing Sensitivity on Area Ratio

Robust Design Using Multi Objective Design Study

Random Number Generation

- Random numbers for common distributions can be obtained using Box-Muller method in Excel and the equations:
 - Standard Normal Distribution
 - Xi= μ + σ *Rn
 - Where:
 - Rn = $\int (-2*ln(Ru) * cos(2\pi Ru)$
 - Ru a uniform random number generator
 - In Excel =SQRT(-2*LN(RAND()))*COS(2*PI()*RAND())
 - Distribution of 10,000 random input variables generated in Excel with a mean of 10 and standard deviation of 2

Random spacing Input and Area Ratio Output

Application activity # 4 BMX - Pro/MECHANICA Integration

- Set up an analysis in Pro/MECHANICA,
- Set up a BMX Analysis feature.
 - tag the list of quantified results from the Mechanica analysis as a computed parameter.
- Use these computed parameters for relations, Sensitivity, Global Optimization and Multi-Objective Design Studies.

Set up an analysis in Pro/MECHANICA

Tag the list of quantified results from the Mechanica analysis as a computed parameter

0

Sensitivity of Rib's length on Max Displacement

Sensitivity of Rib's length on Max stress

BMX-Modal analysis

Sensitivity of Hole Diameter on Natural Frequency

Application activity # 5 Mechanism Optimization

Ackerman Steering Optimization

Find optimum
Ackerman angle
that minimizes the
steering error

Ackerman Steering Mechanism

Ackerman Steering Optimization

Assumptions:

- Low speed steering is achieved by pure rolling of wheels
- For low speed the slip angles are negligible small

· Goals:

- Identify the instantaneous center of rotation
- Establish measures for the steering error
- Plot the steering error versus time for a given Ackerman angle
- Using Behavioral Modeling plot the maximum steering error versus the Ackerman angle
- Find the optimum Ackerman angle that minimizes the steering error

Steering error versus time for Ackerman angle = 16 deg

